Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vesicular monoamine transporter type

Vesicular monoamine transporter type 2 (VMAT2) is located on the membrane of the intracellular storage vesicle, and it transports all biogenic amines (e.g. serotonin, norepinephrine, dopamine, acetylcholine, histamine) with practically equivalent affinity. Regional localization of VMAT2 is consistent with the known monoamine nerve terminal density it is highest in the striatum, lateral septum, substantia nigra pars compacta, raphe nucleus, and locus ceruleus. Lower density is evident in the cerebral cortex and in the cerebellum. [Pg.13]

Synaptic vesicles isolated from brain exhibit four distinct vesicular neurotransmitter transport activities one for monoamines, a second for acetylcholine, a third for the inhibitory neurotransmitters GABA and glycine, and a fourth for glutamate [1], Unlike Na+-dependent plasma membrane transporters, the vesicular activities couple to a proton electrochemical gradient (A. lh+) across the vesicle membrane generated by the vacuolar H+-ATPase ( vacuolar type proton translocating ATPase). Although all of the vesicular transport systems rely on ApH+, the relative dependence on the chemical and electrical components varies (Fig. 1). The... [Pg.1279]

The neurotransmitter phenotype, (i.e., what type of neurotransmitter is stored and ultimately will be released from the synaptic bouton) is determined by the identity of the neurotransmitter transporter that resides on the synaptic vesicle membrane. Although some exceptions to the rule may exist all synaptic vesicles of a given neuron normally will express only one transporter type and thus will have a dehned neurotransmitter phenotype (this concept is enveloped in what is known as Dale s principle see also Reference 19). To date, four major vesicular transporter systems have been characterized that support synaptic vesicle uptake of glutamate (VGLUT 1-3), GABA and glycine (VGAT), acetylcholine (VAChT), and monoamines such as dopamine, norepinephrine, and serotonin (VMAT 1 and 2). Vesicles that store and release neuropeptides do not have specific transporters to load and concentrate the peptides but, instead, are formed with the peptides already contained within. [Pg.1251]

FIGURE 23.7 Dopamine (DA) is synthesized within neuronal terminals from the precursor tyrosine by the sequential actions of the enzymes tyrosine hydroxylase, producing the intermediary L-dihydroxyphenylalanine (Dopa), and aromatic L-amino acid decarboxylase. In the terminal, dopamine is transported into storage vesicles by a transporter protein (T) associated with the vesicular membrane. Release, triggered by depolarization and entry of Ca2+, allows dopamine to act on postsynaptic dopamine receptors (DAR). Several distinct types of dopamine receptors are present in the brain, and the differential actions of dopamine on postsynaptic targets bearing different types of dopamine receptors have important implications for the function of neural circuits. The actions of dopamine are terminated by the sequential actions of the enzymes catechol-O-methyl-transferase (COMT) and monoamine oxidase (MAO), or by reuptake of dopamine into the terminal. [Pg.271]


See other pages where Vesicular monoamine transporter type is mentioned: [Pg.366]    [Pg.380]    [Pg.3]    [Pg.12]    [Pg.122]    [Pg.289]    [Pg.366]    [Pg.380]    [Pg.3]    [Pg.12]    [Pg.122]    [Pg.289]    [Pg.1280]    [Pg.179]    [Pg.587]    [Pg.1280]    [Pg.293]    [Pg.519]    [Pg.275]    [Pg.30]    [Pg.358]    [Pg.121]    [Pg.337]    [Pg.100]    [Pg.78]    [Pg.92]    [Pg.106]   
See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Monoamine transporters

Monoamine transporters types

Vesicular

Vesicular monoamine transporter

Vesicular transport

© 2024 chempedia.info