Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serine trypsin

Fig. 10.12 Sequence alignment of trypsin, chymotrypsin and thrombin (bovine). The active sites histidine, aspartic acid and serine are highlighted. Fig. 10.12 Sequence alignment of trypsin, chymotrypsin and thrombin (bovine). The active sites histidine, aspartic acid and serine are highlighted.
Many enzymes have been the subject of protein engineering studies, including several that are important in medicine and industry, eg, lysozyme, trypsin, and cytochrome P450. SubtiHsin, a bacterial serine protease used in detergents, foods, and the manufacture of leather goods, has been particularly well studied (68). This emphasis is in part owing to the wealth of stmctural and mechanistic information that is available for this enzyme. [Pg.203]

As these experiments with engineered mutants of trypsin prove, we still have far too little knowledge of the functional effects of single point mutations to be able to make accurate and comprehensive predictions of the properties of a point-mutant enzyme, even in the case of such well-characterized enzymes as the serine proteinases. Predictions of the properties of mutations using computer modeling are not infallible. Once produced, the mutant enzymes often exhibit properties that are entirely surprising, but they may be correspondingly informative. [Pg.215]

Sprang, S., et al. The three-dimensional structure of Asn ° mutant of trypsin role of Asp ° in serine protease catalysis. Science 237 905-909, 1987. [Pg.221]

Until recently, the catalytic role of Asp ° in trypsin and the other serine proteases had been surmised on the basis of its proximity to His in structures obtained from X-ray diffraction studies, but it had never been demonstrated with certainty in physical or chemical studies. As can be seen in Figure 16.17, Asp ° is buried at the active site and is normally inaccessible to chemical modifying reagents. In 1987, however, Charles Craik, William Rutter, and their colleagues used site-directed mutagenesis (see Chapter 13) to prepare a mutant trypsin with an asparagine in place of Asp °. This mutant trypsin possessed a hydrolytic activity with ester substrates only 1/10,000 that of native trypsin, demonstrating that Asp ° is indeed essential for catalysis and that its ability to immobilize and orient His is crucial to the function of the catalytic triad. [Pg.517]

Proteinase-activated recqrtors (PARs) are a unique family of G-protein-coupled receptors (GPCRs) that are activated in response to serine proteinases. There are four PAR family members PAR-1 through to PAR-4. PAR-1 and PAR-3 respond to thrombin, PAR-2 responds to trypsin, whilst PAR-4 is sensitive to both thrombin- and trypsin-related proteinases. [Pg.1019]

Trypsin-like proteinases are serine proteinases that recognized peptide residues with positively charged side chains (arginyl or lysyl residues) and that effect... [Pg.1246]

FIGURE 5.7. A FEP surface for PT between serine and histidine in trypsin (the calculations are taken from Ref. 4). [Pg.146]

The serine proteases are the most extensively studied class of enzymes. These enzymes are characterized by the presence of a unique serine amino acid. Two major evolutionary families are presented in this class. The bacterial protease subtilisin and the trypsin family, which includes the enzymes trypsin, chymotrypsin, elastase as well as thrombin, plasmin, and others involved in a diverse range of cellular functions including digestion, blood clotting, hormone production, and complement activation. The trypsin family catalyzes the reaction ... [Pg.170]

The actual reaction mechanism is very similar for the different members of the family, but the specificity toward the different side chain, R, differs most strikingly. For example, trypsin cleaves bonds only after positively charged Lys or Arg residues, while chymotrypsin cleaves bonds after large hydrophobic residues. The specificity of serine proteases is usually designated by labeling the residues relative to the peptide bond that is being cleaved, using the notation... [Pg.171]

Acylation reaction, 171 Alanine, structure of, 110 Alcohol dehydrogenase, 205 Amide hydrolysis, see also Serine proteases Trypsin... [Pg.229]

SCF, see Self-consistent field treatment (SCF) Schroedinger equation, 2,4,74 Secular equations, 6,10, 52 solution by matrix diagonalization, 11 computer program for, 31-33 Self-consistent field treatment (SCF), of molecular orbitals, 28 Serine, structure of, 110 Serine proteases, 170-188. See also Subtilisin Trypsin enzyme family comparison of mechanisms for, 182-184, 183... [Pg.234]

Definition of Ej and E2 eonformations of the a subunit of Na,K-ATPase involves identification of cleavage points in the protein as well as association of cleavage with different rates of inactivation of Na,K-ATPase and K-phosphatase activities [104,105]. In the Ei form of Na,K-ATPase the cleavage patterns of the two serine proteases are clearly distinct. Chymotrypsin cleaves at Leu (C3), Fig. 3A, and both Na,K-ATPase and K-phosphatase are inactivated in a monoexponential pattern [33,106]. Trypsin cleaves the E form rapidly at Lys ° (T2) and more slowly at Arg (T3) to produce the characteristie biphasic pattern of inactivation. Localization of these splits was determined by sequencing N-termini of fragments after isolation on high resolution gel filtration columns [107]. [Pg.18]

NS3 is a 631 amino acid protein, and its first 180 amino acids encode a serine protease of the chymotrypsin family (Figure 2.2A). It has a typical chymotrypsin-family fold consisting of two jS-barrels, with catalytic triad residues at the interface. His-57 and Asp-81 are contributed by the N-terminal jS-barrel and Ser-139 from the C-terminal jS-barrel. NS3 and closely related viral proteases are significantly smaller than other members of the chymotrypsin family, and many of the loops normally found between adjacent jS-strands in trypsin proteases are truncated in NS3 [31]. Probably... [Pg.70]

Serine proteases usually show primary specificity (occupation of subsite Si) for positively charged arginine or lysine (trypsin, plasmin, plasminogen activators, thrombin), large hydrophobic side chains of phenylalanine, tyrosine, and tryptophan (chymotrypsin, cathepsin G, chymase, and subtilisin), or small aliphatic side chains (elastases). Nevertheless, there are a large number of variations and in many cases, other subsites like S2 and S3 are more discriminating while maintaining the... [Pg.360]

Bromomethyl-3,4-dibromo-3,4-dihydrocoumarin 1 (Fig. 11.4) and its chloro-methylated analogue 2b rapidly and progressively inactivate a-chymotrypsin and also the activities of a series of trypsin-like proteases. A benzyl substituent characteristic of good substrates of a-chymotrypsin was introduced at the 3-position to make inhibition more selective. This substituted dihydrocoumarin 3 irreversibly inhibited a-chymotrypsin and other proteases. These functionalized six-membered aromatic lactones, and their five- and seven-membered counterparts, 3//-benzofuran-2-ones 2a26 and 4,5-dihydro-3//-benzo[b]oxepin-2-ones 2c,27 were the first efficient suicide inhibitors of serine proteases. Their postulated mechanism of action is shown in Scheme 11.2. [Pg.363]

The outstanding inclusion ability and the carboxylic functions of host I raised the idea of co-erystallizing it with imidazole (Im) which, due to its versatile nature 114), is one of the frequently used components in enzyme active sites, generally presented by histidine. Formally, a system made of imidazole and an acid component may mimic two essential components of the so-called catalytic triad of the serine protease family of enzymes the acid function of Aspl02 and the imidazole nucleus of His57 115) (trypsin sequence numbering). The third (albeit essential) component of the triad corresponding to the alcohol function of Seri 95 was not considered in this attempt. This family of enzymes is of prime importance in metabolitic processes. [Pg.128]

Thus the alkaline protease obtained from Bacillus licheniformis with a molecular mass of about 27 000 consists of 274 amino acid residues and has serine and histidine as active sites. Pancreatic trypsin with a molecular mass of about 24 000 contains 230 amino acid residues and also has serine and histidine as active sites. Papain (molecular mass about 23 000 and 211 amino acid residues) has cysteine and histidine as active sites. [Pg.77]


See other pages where Serine trypsin is mentioned: [Pg.408]    [Pg.538]    [Pg.168]    [Pg.310]    [Pg.111]    [Pg.210]    [Pg.361]    [Pg.361]    [Pg.361]    [Pg.416]    [Pg.147]    [Pg.181]    [Pg.466]    [Pg.514]    [Pg.520]    [Pg.430]    [Pg.32]    [Pg.673]    [Pg.1019]    [Pg.146]    [Pg.233]    [Pg.99]    [Pg.101]    [Pg.396]    [Pg.54]    [Pg.589]    [Pg.361]    [Pg.369]    [Pg.372]    [Pg.133]   
See also in sourсe #XX -- [ Pg.262 ]




SEARCH



Plant Kunitz serine protease inhibitor effects on trypsin

Potato type II serine protease inhibitor effects on trypsin

Serine proteases trypsin

Squash family serine protease inhibitor effects on trypsin

Trypsin

Trypsin active serine, mechanism

Trypsin trypsinization

Trypsin-like serine protease factor

Trypsin-like serine protease, function

Trypsination

Trypsinization

© 2024 chempedia.info