Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation using cyclodextrin polymers

The above phases represent the most common phases used in solving nearly all of the frequently encountered application problems. There are many other stationary phases which are produced to tune the phase polarity for specific applications. In addition to these phases, there are liquid crystalline, chiral, cyclodextrin, polymers such as polystyrene, divinylben-zene, molecular sieves, and alumina, which are designed for specific separation problems. The chemistry of fused silica deactivation and stationary-phase application, bonding, and cross-linking has been reviewed in detail [3,4]. [Pg.45]

The ability of some components of nucleic acids, especially those with an adenine base, to form complex with 8-cyclodextrin, can also be readily used for chromatographic separations of various nucleotides and nucleosides (59). A substantial problem associated with application of cyclodextrin polymer gels, is that the accessibility of the cyclodextrin cavities on the surface and within the interior of the polymer particle is rather different. The rate of entrapment and release of solutes from the streaming liquid is obviously a diffusion controlled process. Consequently, a longer time is needed to reach an equilibrium within the particle than on its surface. The accessibility of the cyclodextrin rings will be more uniform, if the cyclodextrin is immobilized on the surface of non-complexing polymer particles (polyacrylamide, agarose (60,61) cellulose (62), and silica (63)). Therefore, a better separation (however lower capacity) is expected. [Pg.214]

In addition to their use in pharmaceutical formulations, cyclodextrins have also been investigated for use in various industrial applications. Analytically, cyclodextrin polymers are used in chromatographic separations, particularly of chiral materials. [Pg.220]

Catalytically active supported ionic liquid membranes were used for propylene/propane vapor mixture separation. In this case, the ionic Hquid was immobilized in the pores of an asymmetric ceramic support, displaying sufficient permeability, good selectivity, and long-term stabUity [51]. Porous inorganic membranes were also used as a support for chiral-selective liquid membranes. For this purpose, porous tubular ceramic membranes were impregnated with 3-cyclodextrin polymer. Such SLMs were used for separation of enantiomers of racemic pharmaceutical chlorthahdone [52]. [Pg.98]

Chapter 29 Use of Cyclodextrin Polymers in Separation of Organic Species 817... [Pg.771]

Gyclodextrins. As indicated previously, the native cyclodextrins, which are thermally stable, have been used extensively in Hquid chromatographic chiral separations, but their utihty in gc appHcations was hampered because their highly crystallinity and insolubiUty in most organic solvents made them difficult to formulate into a gc stationary phase. However, some functionali2ed cyclodextrins form viscous oils suitable for gc stationary-phase coatings and have been used either neat or diluted in a polysiloxane polymer as chiral stationary phases for gc (119). Some of the derivati2ed cyclodextrins which have been adapted to gc phases are 3-0-acetyl-2,6-di-0-pentyl, 3-0-butyryl-2,6-di-0-pentyl,... [Pg.70]

Recently, two examples of the separation of enantiomers using CCC have been published (Fig. 1-2). The complete enantiomeric separation of commercial d,l-kynurenine (2) with bovine serum albumin (BSA) as a chiral selector in an aqueous-aqueous polymer phase system was achieved within 3.5 h [128]. Moreover, the chiral resolution of 100 mg of an estrogen receptor partial agonist (7-DMO, 3) was performed using a sulfated (3-cyclodextrin [129, 130], while previous attempts with unsubstituted cyclodextrin were not successful [124]. The same authors described the partial resolution of a glucose-6-phosphatase inhibitor (4) with a Whelk-0 derivative as chiral selector (5) [129]. [Pg.11]

A prehminary study of the use of larch AGs in aqueous two-phase systems [394] revealed that this polysaccharide provides a low-cost alternative to fractionated dextrans for use in aqueous two-phase, two-polymer systems with polyethylene glycol (PEG). The narrow molecular-weight distribution (Mw/Mn of 1-2) and low viscosity at high concentration of AG can be exploited for reproducible separations of proteins under a variety of conditions. The AG/PEG systems were used with success for batch extractive bioconversions of cornstarch to cyclodextrin and glucose. [Pg.49]

There is a wide variety of commercially available chiral stationary phases and mobile phase additives.32 34 Preparative scale separations have been performed on the gram scale.32 Many stationary phases are based on chiral polymers such as cellulose or methacrylate, proteins such as human serum albumin or acid glycoprotein, Pirkle-type phases (often based on amino acids), or cyclodextrins. A typical application of a Pirkle phase column was the use of a N-(3,5-dinitrobenzyl)-a-amino phosphonate to synthesize several functionalized chiral stationary phases to separate enantiomers of... [Pg.12]


See other pages where Separation using cyclodextrin polymers is mentioned: [Pg.24]    [Pg.25]    [Pg.39]    [Pg.93]    [Pg.262]    [Pg.166]    [Pg.151]    [Pg.41]    [Pg.377]    [Pg.22]    [Pg.482]    [Pg.43]    [Pg.356]    [Pg.264]    [Pg.817]    [Pg.819]    [Pg.821]    [Pg.823]    [Pg.825]    [Pg.827]    [Pg.829]    [Pg.831]    [Pg.833]    [Pg.835]    [Pg.837]    [Pg.839]    [Pg.841]    [Pg.843]    [Pg.847]    [Pg.849]    [Pg.851]    [Pg.853]    [Pg.855]    [Pg.242]    [Pg.59]    [Pg.5]    [Pg.433]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Cyclodextrin separation

Cyclodextrin use

Cyclodextrins polymers

Cyclodextrins using

Polymer separations

Polymer separators

© 2024 chempedia.info