Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semiempirical methods approximation

Semiempirical methods (approximate parts of HF calculations such as two-electron integrals)... [Pg.38]

A highly readable account of early efforts to apply the independent-particle approximation to problems of organic chemistry. Although more accurate computational methods have since been developed for treating all of the problems discussed in the text, its discussion of approximate Hartree-Fock (semiempirical) methods and their accuracy is still useful. Moreover, the view supplied about what was understood and what was not understood in physical organic chemistry three decades ago is... [Pg.52]

In formulating a mathematical representation of molecules, it is necessary to define a reference system that is defined as having zero energy. This zero of energy is different from one approximation to the next. For ah initio or density functional theory (DFT) methods, which model all the electrons in a system, zero energy corresponds to having all nuclei and electrons at an infinite distance from one another. Most semiempirical methods use a valence energy that cor-... [Pg.7]

Transition structures are more dihicult to describe than equilibrium geometries. As such, lower levels of theory such as semiempirical methods, DFT using a local density approximation (LDA), and ah initio methods with small basis sets do not generally describe transition structures as accurately as they describe equilibrium geometries. There are, of course, exceptions to this, but they must be identihed on a case-by-case basis. As a general rule of thumb, methods that are empirically dehned, such as semiempirical methods or the G1 and G2 methods, describe transition structures more poorly than completely ah initio methods do. [Pg.149]

A few of the earliest methods did truncate the atom on the dividing line between regions. Leaving this unfilled valence is reasonable only for a few of the very approximate semiempirical methods that were used at that time. [Pg.202]

In most cases the chemist only needs differences of values and/or relative estimations in comparison with a standard. The inaccuracies introduced by semiempirical methods with its relatively drastic approximations can be limited by applying the differences causing the calculated values to possess suitable accuracy. [Pg.179]

Semiempirical (CNDO, MNDO, ZINDO, AMI, PM3, PM3(tm) and others) methods based on the Hartree-Fock self-consistent field (HF-SCF) model, which treats valence electrons only and contains approximations to simplify (and shorten the time of) calculations. Semiempirical methods are parameterized to fit experimental results, and the PM3(tm) method treats transition metals. Treats systems of up to 200 atoms. [Pg.130]

One might add that the failure of CNDO/2 is probably mainly due to the method of parametrization. If a semiempirical method is to be used to estimate heats of formation and molecular geometries, the parameters in it should be chosen accordingly rather than to mimic the results of an approximation known to give unsatisfactory estimates of energies. Recent studies suggest that CNDO/2 may in fact prove useful if properly parametrized. u>... [Pg.8]

As indicated above, early attempts to use semiempirical methods had proved unsatisfactory, due to the wrong choice of parameters. A similar situation had existed in the Pople 14> treatment of conjugated molecules using the Huckel o, ir approximation the parameters in this were chosen to fit spectroscopic data and with these the method gave poor estimates of ground state properties. Subsequent work in our laboratories has shown JS) that this approach can lead to estimates of heats of atomization and molecular geometries that are in almost perfect agreement with experiment if the parameters are chosen to reproduce these quantities. [Pg.8]

The continued success of the extended Hiickel method in transition metal chemistry, where it was the method of choice until the mid 1980 s is surely related to the problems of other semiempirical methods in this area of chemistry. While methods like MOP AC [21] or AMI [22] have been extremely productive in the field of organic chemistry, they have found little success in transition metal chemistry. These methods are based in equation 2, similar to 1, but with the very significant difference that the Fock matrix F is computed from the molecular orbitals, in an iterative way, though through an approximate formula. [Pg.5]

The Hartree-Fock approach derives from the application of a series of well defined approaches to the time independent Schrodinger equation (equation 3), which derives from the postulates of quantum mechanics [27]. The result of these approaches is the iterative resolution of equation 2, presented in the previous subsection, which in this case is solved in an exact way, without the approximations of semiempirical methods. Although this involves a significant increase in computational cost, it has the advantage of not requiring any additional parametrization, and because of this the FIF method can be directly applied to transition metal systems. The lack of electron correlation associated to this method, and its importance in transition metal systems, limits however the validity of the numerical results. [Pg.6]

Semiempirical methods are widely used, based on zero differential overlap (ZDO) approximations which assume that the products of two different basis functions for the same electron, related to different atoms, are equal to zero [21]. The use of semiempirical methods, like MNDO, ZINDO, etc., reduces the calculations to about integrals. This approach, however, causes certain errors that should be compensated by assigning empirical parameters to the integrals. The limited sets of parameters available, in particular for transition metals, make the semiempirical methods of limited use. Moreover, for TM systems the self-consistent field (SCF) procedures are hardly convergent because atoms with partly filled d shells have many... [Pg.681]

Most present-day semiempirical methods are based on the idea of the neglect of differential overlap (NDO) of inner electrons developed by Pople and co-workers (see, for example, Pople and Beveridge, 1970 Dewar, 1975). NDO-type approximations generally result in a decrease in computational resource requirements that are 1/100 to 1/1000 of the corresponding ab initio methods. [Pg.109]

The reactivities of isomeric thienothiophenes calculated in n -electron approximation by the PPP method, and those calculated considering all valence electrons, show reasonable agreement. It should be noted, however, that the choice of parameters in PPP calculations is somewhat arbitrary, especially for heavy atoms (e.g., sulfur). This may lead to a discrepancy between theoretical (in 7r-electron approximation) and experimental estimation of reactivities. For example, Clark applied the semiempirical method PPP SCF MO to calculate the reactivities of different positions in thienothiophenes 1—3, thiophene, and naphthalene from the localization energy values and found the following order of decreasing reactivity for electrophilic substitution thieno[3,4-b]-thiophene (3) > thieno[2,3-Z>]thiophene (I) > thieno [3,2-b]thiophene... [Pg.187]

In that study [31], we estimated the electronic coupling with the help of HF/6-31G calculations. Any attempt to expand such an investigation into a reasonably quantitative description of the variation of the electronic coupling over time would be much too costly. As noted above, one can overcome that problem by constructing a special semiempirical method (e.g., NDDO-HT) affording sufficiently accurate estimates of electronic matrix elements, or by using an approximate relation between H a and the overlap of related orbitals. [Pg.68]

Prior to considering semiempirical methods designed on the basis of HF theory, it is instructive to revisit one-electron effective Hamiltonian methods like the Huckel model described in Section 4.4. Such models tend to involve the most drastic approximations, but as a result their rationale is tied closely to experimental concepts and they tend to be inmitive. One such model that continues to see extensive use today is the so-called extended Huckel theory (EHT). Recall that the key step in finding the MOs for an effective Hamiltonian is the formation of the secular determinant for the secular equation... [Pg.134]


See other pages where Semiempirical methods approximation is mentioned: [Pg.274]    [Pg.904]    [Pg.274]    [Pg.904]    [Pg.25]    [Pg.11]    [Pg.187]    [Pg.153]    [Pg.239]    [Pg.193]    [Pg.334]    [Pg.326]    [Pg.255]    [Pg.30]    [Pg.381]    [Pg.140]    [Pg.236]    [Pg.243]    [Pg.25]    [Pg.234]    [Pg.173]    [Pg.26]    [Pg.27]    [Pg.167]    [Pg.463]    [Pg.464]    [Pg.466]    [Pg.153]    [Pg.286]    [Pg.4]    [Pg.8]    [Pg.131]    [Pg.133]   
See also in sourсe #XX -- [ Pg.107 ]

See also in sourсe #XX -- [ Pg.30 , Pg.31 ]




SEARCH



Approximation methods

Semiempirical

Semiempirical approximations

Semiempirical methods

© 2024 chempedia.info