Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semibatch reactor residence time distribution

From this example of a fast, competitive consecutive reaction scheme we can see that nonideal mixing can cause a decrease in selectivity in both continuous and semibatch reactors. Residence time distribution issues can cause a reduction in yield and selectivity for both slow and fast reactions (see Chapter 1), but for fast reactions, the decrease in selectivity and yield due to inefficient local mixing can be greater than that caused by RTD issues alone. In semibatch reactors, poor bulk mixing can also cause these reductions (see Example 13-3). [Pg.758]

The batch emulsion polymerization is commonly used in the laboratory to study the reaction mechanisms, to develop new latex products and to obtain kinetic data for the process development and the reactor scale-up. Most of the commercial latex products are manufactured by semibatch or continuous reaction systems due to the very exothermic nature of the free radical polymerization and the rather limited heat transfer capacity in large-scale reactors. One major difference among the above reported polymerization processes is the residence time distribution of the growing particles within the reactor. The broadness of the residence time distribution in decreasing order is continuous>semibatch>batch. As a consequence, the broadness of the resultant particle size distribution in decreasing order is continuous>semibatch>batch, and the rate of polymerization generally follows the trend batch>semibatch>continuous. Furthermore, the versatile semibatch and continuous emulsion polymerization processes offer the operational flexibility to produce latex products with controlled polymer composition and particle morphology. This may have an important influence on the application properties of latex products [270]. [Pg.49]

For heterogeneous catalysts, tandem reactor technology also relies on the fact that each polymer particle is in fact a microreactor operated in semibatch mode, into which monomers and chain-transfer agents are fed continually, while the polymer formed never leaves the microreactor. In this way, polymer populations with different average properties are produced in each reactor and accumulate in the polymer particle microreactor, as illustrated in Figure 8.37. In theory, an optimal balance does exist between the fractions of these different populations to meet certain performance criteria. This creates a truly fascinating reactor and product design problem because the fractions of the different polymer populations per particle will be a function of the residence time distribution in the individual reactors in the reactor train. [Pg.418]

The design of a polymerization reactor begins with the selection of the type of reactor (batch, semibatch or continuous) and then proceeds to the sizing and details of the reactor configuration. Only then can the details of operation and control be addressed. To this end, we will begin with a discussion of the basic types of reactors. Ultimately, it will be clear that the choice of reactor type is determined not only by practical considerations such as scale of production and propensity for fouling, but also by the specific polymerization kinetics. More complete discussions of reactor types and their residence time distributions may be found in references [1,2],... [Pg.345]


See other pages where Semibatch reactor residence time distribution is mentioned: [Pg.21]    [Pg.34]    [Pg.3770]    [Pg.7]    [Pg.8]    [Pg.196]    [Pg.370]    [Pg.343]    [Pg.370]    [Pg.345]   


SEARCH



Reactor distribution

Reactors residence time

Residence distribution

Residence time distribution

Semibatch reactors

© 2024 chempedia.info