Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self consistent reaction field , nonlinear

Continuum solvation models consider the solvent as a homogeneous, isotropic, linear dielectric medium [104], The solute is considered to occupy a cavity in this medium. The ability of a bulk dielectric medium to be polarized and hence to exert an electric field back on the solute (this field is called the reaction field) is determined by the dielectric constant. The dielectric constant depends on the frequency of the applied field, and for equilibrium solvation we use the static dielectric constant that corresponds to a slowly changing field. In order to obtain accurate results, the solute charge distribution should be optimized in the presence of the field (the reaction field) exerted back on the solute by the dielectric medium. This is usually done by a quantum mechanical molecular orbital calculation called a self-consistent reaction field (SCRF) calculation, which is iterative since the reaction field depends on the distortion of the solute wave function and vice versa. While the assumption of linear homogeneous response is adequate for the solvent molecules at distant positions, it is a poor representation for the solute-solvent interaction in the first solvation shell. In this case, the solute sees the atomic-scale charge distribution of the solvent molecules and polarizes nonlinearly and system specifically on an atomic scale (see Figure 3.9). More generally, one could say that the breakdown of the linear response approximation is connected with the fact that the liquid medium is structured [105],... [Pg.348]

Among the few determinations of of molecular crystals, the CPHF/ INDO smdy of Yamada et al. [25] is unique because, on the one hand, it concerns an open-shell molecule, the p-nitrophenyl-nitronyl-nitroxide radical (p-NPNN) and, on the other hand, it combines in a hybrid way the oriented gas model and the supermolecule approach. Another smdy is due to Luo et al. [26], who calculated the third-order nonlinear susceptibility of amorphous thinmultilayered films of fullerenes by combining the self-consistent reaction field (SCRF) theory with cavity field factors. The amorphous namre of the system justifies the choice of the SCRF method, the removal of the sums in Eq. (3), and the use of the average second hyperpolarizability. They emphasized the differences between the Lorentz Lorenz local field factors and the more general Onsager Bbttcher ones. For Ceo the results differ by 25% but are in similar... [Pg.49]

Dehu, C., Meyers, F., Hendrickx. E.. Clays, K., Persoons, A., Marder, S.R., Bredas, J.L. Solvent effects on the second-order nonlinear optical response of tr-conjugated molecules A combined evaluation through self-consistent reaction field calculations and hyper-Rayleigh scaterring measurements. J. Am. Chem. Soc. 117, 10127-10128 (1995)... [Pg.146]

In most work reported so far, the solute is treated by the Hartree-Fock method (i.e., Ho is expressed as a Fock operator), in which each electron moves in the self-consistent field (SCF) of the others. The term SCRF, which should refer to the treatment of the reaction field, is used by some workers to refer to a combination of the SCRF nonlinear Schrodinger equation (34) and SCF method to solve it, but in the future, as correlated treatments of the solute becomes more common, it will be necessary to more clearly distinguish the SCRF and SCF approximations. The SCRF method, with or without the additional SCF approximation, was first proposed by Rinaldi and Rivail [87, 88], Yomosa [89, 90], and Tapia and Goscinski [91], A highly recommended review of the foundations of the field was given by Tapia [71],... [Pg.11]

Now definitions or frameworks of modem thermodynamics in a broad sense, of classical thermodynamics, and of modem thermodynamics in a narrow sense are very clear. Modern thermodynamics in a broad sense includes all fields of thermodynamics (both classical thermodynamics and modem thermodynamics in a narrow sense) for any macroscopic system, but modem thermodynamics in a narrow sense includes only three fields of thermodynamics, i.e., nonequilibrium nondissipative thermodynamics, linear dissipative thermodynamics and nonlinear dissipative thermodynamics. The modem thermodynamics in a narrow sense should not be called nonequilibrium thermodynamics, because the classical nonequilibrium thermodynamics is not included. Meanwhile, the classical thermodynamics should only be applied to simpler systems without reaction coupling. That is, the application of classical thermodynamics to some modem inorganic syntheses and to the life science may be not suitable. Without the self-consistent classification of modem thermodynamics it was very difficult to really accept the term of modem thermodynamics even only for teaching courses. [Pg.546]

Mark A. Ratner (Co-Chair) is professor of chemistry. Department of Chemistry, Northwestern University, Evanston, Illinois. He obtained his B.A. from Harvard University (1964) and his Ph.D. (chemistry) from Northwestern University (1969). His research interests are in nonlinear optical response properties of molecules, electron transfer and molecular electronics, dynamics of polymer electrolyte transport, self-consistent field models for coupled vibration reaction dynamics, mean-field models for extended systems, and tribology and glassy dynamics. He has some 312 professional publications. Ratner is a fellow of the American Physical Society and the American Association for the Advancement of Science and has received numerous teaching awards from Northwestern University. He is a member of the National Academy of Sciences. [Pg.64]

Furthermore, the success of the quaternarization reaction was demonstrated by the appearance of a Nli peak and the shift at lower BE values of the chlorine signal (from 199.9 to 199.0 eV), consistent with the formation of a charge - compensating chloride anion. In the same field, Lin and co-workers synthesised [146] and characterised [147] some siloxane-based self-assembled stilbazolium multilayers that are intrinsecally acentric and exhibit very large second order nonlinear optical response (see Fig. 4.40 for the detailed multilayer construction). [Pg.210]


See other pages where Self consistent reaction field , nonlinear is mentioned: [Pg.282]    [Pg.20]    [Pg.160]   


SEARCH



Nonlinearity reaction

Reaction field

Self-Consistent Field

Self-consisting fields

© 2024 chempedia.info