Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selenium intermediates

This chapter is an attempt to present the important results of studies of the synthesis, reactivity, and physicochemical properties of this series of compounds. The subject was surveyed by Bulka (3) in 1963 and by Klayman and Gunther (4) in 1973. Unlike the oxazoles and thiazoles. there are few convenient preparative routes to the selenazoles. Furthermore, the selenium intermediates are difficult to synthesize and are often extremely toxic selenoamides tend to decompose rapidly depositing metallic selenium. This inconvenience can be alleviated by choice of suitable reaction conditions. Finally, the use of selenium compounds in preparative reactions is often complicated by the fragility of the cycle and the deposition of metallic selenium. [Pg.219]

Selenium dioxide is also an oxygen donor to alkenes. In this case, however, the initial reaction of the double bond is with the selenium center followed by two pericyclic steps. After hydrolysis of the organo-selenium intermediate, the result is a hydroxylation at the allylic carbon position65. Thus, limonene (2) yields racemic p-mentha-l,8(9)-dien-4-ol66. The high toxicity of selenium intermediates and prevalence of many rearrangements has limited the widespread use of the reagent in synthesis. [Pg.901]

A [2,3]-sigmatropic rearrangement using selenium intermediates has been used in a recent stereospeciflc synthesis of pseudocodeine (see Scheme 50). [Pg.531]

The synthesis and application of selenium intermediates and seleno sugars, and the subsequent study of their transformation into various classes of useful precursors and target derivatives, are witnessing rapid new development. This new field of synthetic carbohydrate chemistry offers new methodologies for general organic and natural-product syntheses, and new... [Pg.193]

It is possible to oxidise a methylene group that is adjacent to a carbonyl group to yield another carbonyl group. This transformation is achieved using selenium dioxide. The presence of a base is necessary. Suggest how a selenium intermediate may be formed. [Pg.340]

The above reaction produces COS as an intermediate which can be isolated when a catalytic amount of selenium is present (40). [Pg.131]

The light-induced rearrangement of 2-phenyl- to 3-phenyl-thiophene may occur by a similar mechanism an equilibrium between the bicyclic intermediate (26) and the cyclopro-penylthioaldehyde (27) has been suggested (Scheme 2). The formation of IV-substituted pyrroles on irradiation of either furans or thiophenes in the presence of a primary amine supports this suggestion (Scheme 3). Irradiation of 2-phenylselenophene yields, in addition to 3-phenylselenophene, the enyne PhC=C—CH=CH2 and selenium. Photolysis of 2-phenyltellurophene furnishes solely the enyne and tellurium (76JOM(108)183). [Pg.42]

A route to phenol has been developed starting from cyclohexane, which is first oxidised to a mixture of cyclohexanol and cyclohexanone. In one process the oxidation is carried out in the liquid phase using cobalt naphthenate as catalyst. The cyclohexanone present may be converted to cyclohexanol, in this case the desired intermediate, by catalytic hydrogenation. The cyclohexanol is converted to phenol by a catalytic process using selenium or with palladium on charcoal. The hydrogen produced in this process may be used in the conversion of cyclohexanone to cyclohexanol. It also may be used in the conversion of benzene to cyclohexane in processes where benzene is used as the precursor of the cyclohexane. [Pg.637]

Oxidative reactions frequently represent a convenient preparative route to synthetic intermediates and end products This chapter includes oxidations of alkanes and cycloalkanes, alkenes and cycloalkenes, dienes, aromatic fluorocarbons, alcohols, phenols, ethers, aldehydes and ketones, carboxylic acids, nitrogen compounds, and organophosphorus, -sulfur, -selenium, -iodine, and -boron compounds... [Pg.321]

Examples of the C2N3S ring system containing three- or four-coordinate sulfur are also well known. The monohalogenated derivatives 12.2 (E = S, Se), are best prepared by the condensation of imidoyl amidines with SCI2 or SeCU, respectively (Scheme 12.1)." In the case of the selenium derivative, the initial product is heated at 60°C and then at 120°C in order to convert it to 12.2 (E = Se) via (PhC)2(NH)N2SeCl2. In the solid state this intermediate is a weakly associated, centrosymmetric dimer with Se-Cl and Se Cl distances of 2.42 and 3.39 A, respectively. ... [Pg.241]

Intramolecular chalcogen interactions may also stabilize reactive functional groups enabling the isolation of otherwise unstable species or their use as transient intermediates, especially in the case of selenium and tellurium. For example, tellurium(II) compounds of the type ArTeCl are unstable with respect to disproportionation in the absence of such interactions. The diazene derivative 15.23 is stabilized by a Te N interaction. Presumably, intramolecular coordination hinders the disproportionation process. Other derivatives of the type RTeX that are stabilized by a Te N interaction include 8-(dimethylamino)-l-(naphthyl)tellurium bromide, 2-(bromotelluro)-A-(p-tolyl)benzylamine, and 2-[(dimethylammo)methyl]phenyltellunum iodide. Intramolecular donation from a nitrogen donor can also be used to stabilize the Se-I functionality in related compounds." ... [Pg.303]

The completion of the synthesis of key intermediate 2 requires only a straightforward sequence of functional group manipulations. In the presence of acetone, cupric sulfate, and camphorsulfonic acid (CSA), the lactol and secondary hydroxyl groups in 10 are simultaneously protected as an acetonide (see intermediate 9). The overall yield of 9 is 55 % from 13. Cleavage of the benzyl ether in 9 with lithium metal in liquid ammonia furnishes a diol (98% yield) which is subsequently converted to selenide 20 according to Grie-co s procedure22 (see Scheme 6a). Oxidation of the selenium atom... [Pg.326]

The wide variety of methods available for the synthesis of orga-noselenides,36 and the observation that the carbon-selenium bond can be easily cleaved homolytically to give a carbon-centered radical creates interesting possibilities in organic synthesis. For example, Burke and coworkers have shown that phenylselenolactone 86 (see Scheme 16), produced by phenylselenolactonization of y,S-unsaturated acid 85, can be converted to free radical intermediate 87 with triphenyltin hydride. In the presence of excess methyl acrylate, 87 is trapped stereoselectively, affording compound 88 in 70% yield 37 it is noteworthy that the intramolecular carbon-carbon bond forming event takes place on the less hindered convex face of bicyclic radical 87. [Pg.397]


See other pages where Selenium intermediates is mentioned: [Pg.137]    [Pg.48]    [Pg.194]    [Pg.901]    [Pg.365]    [Pg.701]    [Pg.702]    [Pg.300]    [Pg.71]    [Pg.371]    [Pg.649]    [Pg.106]    [Pg.137]    [Pg.48]    [Pg.194]    [Pg.901]    [Pg.365]    [Pg.701]    [Pg.702]    [Pg.300]    [Pg.71]    [Pg.371]    [Pg.649]    [Pg.106]    [Pg.256]    [Pg.154]    [Pg.314]    [Pg.182]    [Pg.424]    [Pg.333]    [Pg.250]    [Pg.116]    [Pg.149]    [Pg.305]    [Pg.750]    [Pg.26]    [Pg.220]    [Pg.26]    [Pg.195]    [Pg.199]    [Pg.200]    [Pg.201]    [Pg.36]    [Pg.398]   
See also in sourсe #XX -- [ Pg.98 , Pg.531 ]




SEARCH



© 2024 chempedia.info