Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selected ions containing

Figure 4. Selected ions containing S02 and HD = 12 from LVHRMS. Figure 4. Selected ions containing S02 and HD = 12 from LVHRMS.
Fayet et al. (355b) have deposited size-selected ions containing one to nine atoms of Ag onto binder-free AgBr microcrystals. Particles of three... [Pg.144]

In a process similar to that described in the previous item, the stored data can be used to identify not just a series of compounds but specific ones. For example, any compound containing a chlorine atom is obvious from its mass spectrum, since natural chlorine occurs as two isotopes, Cl and Cl, in a ratio of. 3 1. Thus its mass spectrum will have two molecular ions separated by two mass units (35 -i- 2 = 37) in an abundance ratio of 3 1. It becomes a trivial exercise for the computer to print out only those scans in which two ions are found separated by two mass units in the abundance ratio of 3 1 (Figure 36.10). This selection of only certain ion masses is called selected ion recording (SIR) or, sometimes, selected ion monitoring (SIM, an unfortunate... [Pg.259]

Quantitative mass spectrometry, also used for pharmaceutical appHcations, involves the use of isotopicaHy labeled internal standards for method calibration and the calculation of percent recoveries (9). Maximum sensitivity is obtained when the mass spectrometer is set to monitor only a few ions, which are characteristic of the target compounds to be quantified, a procedure known as the selected ion monitoring mode (sim). When chlorinated species are to be detected, then two ions from the isotopic envelope can be monitored, and confirmation of the target compound can be based not only on the gc retention time and the mass, but on the ratio of the two ion abundances being close to the theoretically expected value. The spectrometer cycles through the ions in the shortest possible time. This avoids compromising the chromatographic resolution of the gc, because even after extraction the sample contains many compounds in addition to the analyte. To increase sensitivity, some methods use sample concentration techniques. [Pg.548]

Ca2+ Channel Blockers. Figure 1 Most voltage-gated Ca2+ channels exist as a hetero-oligomeric complex of several subunits, a 1 subunits form the Ca2+-selective ion pore and contain the voltage-sensors of the channel. [Pg.296]

An ion-selective electrode contains a semipermeable membrane in contact with a reference solution on one side and a sample solution on the other side. The membrane will be permeable to either cations or anions and the transport of counter ions will be restricted by the membrane, and thus a separation of charge occurs at the interface. This is the Donnan potential (Fig. 5 a) and contains the analytically useful information. A concentration gradient will promote diffusion of ions within the membrane. If the ionic mobilities vary greatly, a charge separation occurs (Fig. 5 b) giving rise to what is called a diffusion potential. [Pg.57]

Ion-selective membranes derive their permselective properties from either ion exchange, solubility or complexation phenomena. Current ion-selective electrodes contain membranes which consist of glass, solid or liquid phases. [Pg.58]

Using MS detection relaxes the constraints on LC resolution, because additional separation occurs in the mass domain. In principle, LC-MS may yield a complete 2D distribution of a polymer according to chemical composition and molar mass. If MS detection is employed, the efficient cleaning in the LC step makes it possible to use total ion monitoring and even to identify unknown compounds from the sample. As extracts often contain interfering compounds, mass spectrometry in selective ion mode is a practical detector. Fully automated multidimensional LC-MS-MS-MS systems are available. [Pg.555]

The membrane phase m is a solution of hydrophobic anion Ax (ion-exchanger ion) and cation Bx+ in an organic solvent that is immiscible with water. Solution 1 (the test aqueous solution) contains the salt of cation Bx+ with the hydrophilic anion A2. The Gibbs transfer energy of anions Ax and A2 is such that transport of these anions into the second phase is negligible. Solution 2 (the internal solution of the ion-selective electrode) contains the salt of cation B with anion A2 (or some other similar hydrophilic anion). The reference electrodes are identical and the liquid junction potentials A0L(1) and A0L(2) will be neglected. [Pg.437]

Especially sensitive and selective potassium and some other ion-selective electrodes employ special complexing agents in their membranes, termed ionophores (discussed in detail on page 445). These substances, which often have cyclic structures, bind alkali metal ions and some other cations in complexes with widely varying stability constants. The membrane of an ion-selective electrode contains the salt of the determined cation with a hydrophobic anion (usually tetraphenylborate) and excess ionophore, so that the cation is mostly bound in the complex in the membrane. It can readily be demonstrated that the membrane potential obeys Eq. (6.3.3). In the presence of interferents, the selectivity coefficient is given approximately by the ratio of the stability constants of the complexes of the two ions with the ionophore. For the determination of potassium ions in the presence of interfering sodium ions, where the ionophore is the cyclic depsipeptide, valinomycin, the selectivity coefficient is Na+ 10"4, so that this electrode can be used to determine potassium ions in the presence of a 104-fold excess of sodium ions. [Pg.439]

Using a selected ion flow tube (SIFT) technique, DePuy and coworkers studied such rates of deuterium-hydrogen exchange for a series of neutral carbon acids10. Table 1 contains some selected rates of exchange with DO- from DePuy s work these rates are approximate measures of relative acidity in the gas phase. [Pg.735]

Ions derived from the N-terminus of the original peptide are termed a, b, or c (in other words, the charge is retained on the N-terminus), while those originating from the C-terminus are named x, y, or z. Numerical subscripts contain information on the number of amino acid residues present in a given ion. It must be remembered that we are interested only in charged species since the neutral ones are not detected and do not yield peaks in the spectrum. The main idea behind this system is shown in Fig. 6.5, and the structures of selected ion types are depicted in Fig. 6.6. [Pg.183]


See other pages where Selected ions containing is mentioned: [Pg.47]    [Pg.47]    [Pg.170]    [Pg.172]    [Pg.74]    [Pg.29]    [Pg.207]    [Pg.117]    [Pg.448]    [Pg.70]    [Pg.112]    [Pg.65]    [Pg.401]    [Pg.440]    [Pg.497]    [Pg.635]    [Pg.497]    [Pg.545]    [Pg.115]    [Pg.169]    [Pg.10]    [Pg.1253]    [Pg.1417]    [Pg.430]    [Pg.143]    [Pg.231]    [Pg.99]    [Pg.348]    [Pg.710]    [Pg.240]    [Pg.402]    [Pg.176]    [Pg.84]    [Pg.168]    [Pg.311]    [Pg.54]   
See also in sourсe #XX -- [ Pg.2 , Pg.257 ]




SEARCH



Containment selection

© 2024 chempedia.info