Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary characterization

It is interesting to note that this is the first time that in the present framework the quantization is formed by two quantum numbers a number n to be termed the principal quantum number and a number , to be termed the secondary quantum number. This case is reminiscent of the two quantum numbers that characterize the hydrogen atom. [Pg.657]

The cylinder model is used to characterize the helices in the secondary structure of proteins (see the helices in Figure 2-124c),... [Pg.134]

A most important task in the handling of molecular data is the evaluation of "hidden information in large chemical data sets. One of the differences between data mining techniques and conventional database queries is the generation of new data that are used subsequently to characterize molecular features in a more general way. Generally, it is not possible to hold all the potentially important information in a data set of chemical structures. Thus, the extraction of relevant information and the production of reliable secondary information are important topics. [Pg.515]

V Hel IX (Section 27 19) One type of protein secondary struc ture It IS a right handed helix characterized by hydrogen bonds between NH and C=0 groups It contains approxi mately 3 6 amino acids per turn... [Pg.1285]

Polypropylene fibers are used in every aspect of carpet constmetion from face fiber to primary and secondary backings. Polypropylene s advantages over jute as carpet backing are dimensional stabiUty and minimal moisture absorption. Drawbacks include difficulty in dyeing and higher cost. Bulked-continuous-filament (BCF) carpet yams provide face fiber with improved crimp and elasticity. BCF carpet yams are especially important in contract carpets, characterized by low dense loops, where easy cleaning is an advantage. [Pg.322]

Characterization and influence of electrohydro dynamic secondary flows on convective flows of polar gases is lacking for most simple as well as complex flow geometries. Such investigations should lead to an understanding of flow control, manipulation of separating, and accurate computation of local heat-transfer coefficients in confined, complex geometries. The typical Reynolds number of the bulk flow does not exceed 5000. [Pg.496]

Turner s Syndrome. Turner s syndrome is a genetic disorder of females characterized by short stature, nonfunctioning ovaries, and failure to develop secondary sexual characteristics. Several clinical trials in the United States, Europe, and Japan have demonstrated that hGH can accelerate... [Pg.196]

The functional group ia collectors for nonsulfide minerals is characterized by the presence of either a N (amines) or an O (carboxyUc acids, sulfonates, etc) as the donor atoms. In addition to these, straight hydrocarbons, such as fuel oil, diesel, kerosene, etc, are also used extensively either as auxiUary or secondary collectors, or as primary collectors for coal and molybdenite flotation. The chain length of the hydrocarbon group is generally short (2—8 C) for the sulfide collectors, and long (10—20 C) for nonsulfide collectors, because sulfides are generally more hydrophobic than most nonsulfide minerals (10). [Pg.412]

L. Cavalli, A. Landone, and T. PeUizzan, "Linear Alkylation for Detergency—Characterization of Secondary Components," XIX Jomadas Del Comite Espanola De la Detergeneia, Barcelona, Spain, 1988, pp. 41—52. [Pg.55]

The secondary stmcture elements are then identified, and finally, the three-dimensional protein stmcture is obtained from the measured interproton distances and torsion angle parameters. This procedure requites a minimum of two days of nmr instmment time per sample, because two pulse delays are requited in the 3-D experiment. In addition, approximately 20 hours of computing time, using a supercomputer, is necessary for the calculations. Nevertheless, protein stmcture can be assigned using 3-D nmr and a resolution of 0.2 nanometers is achievable. The largest protein characterized by nmr at this writing contained 43 amino acid units (51). However, attempts ate underway to characterize the stmcture of interleukin 2 [85898-30-2] which has over 150 amino acid units. [Pg.396]

Plots of loss modulus or tan 5 vs temperature for polymers give peaks at energy absorbing transitions, such as the glass transition and low temperature secondary transitions (Fig. 20). Such plots are useful for characterizing polymers and products made from them. [Pg.177]

Secondary Structure. The silkworm cocoon and spider dragline silks are characterized as an antiparaHel P-pleated sheet wherein the polymer chain axis is parallel to the fiber axis. Other silks are known to form a-hehcal (bees, wasps, ants) or cross- P-sheet (many insects) stmctures. The cross-P-sheets are characterized by a polymer chain axis perpendicular to the fiber axis and a higher serine content. Most silks assume a range of different secondary stmctures during processing from soluble protein in the glands to insoluble spun fibers. [Pg.77]

Deficiency. Macrocytic anemia, megaloblastic anemia, and neurological symptoms characterize vitamin B 2 deficiency. Alterations in hematopoiesis occur because of the high requirement for vitamin B 2 for normal DNA repHcation necessary to sustain the rapid turnover of the erythrocytes. Abnormal DNA repHcation secondary to vitamin B 2 deficiency produces a defect in the nuclear maturational process of committed hematopoietic stem cells. As a result, the erythrocytes are either morphologically abnormal or die during development. [Pg.112]

The distribution of current (local rate of reaction) on an electrode surface is important in many appHcations. When surface overpotentials can also be neglected, the resulting current distribution is called primary. Primary current distributions depend on geometry only and are often highly nonuniform. If electrode kinetics is also considered, Laplace s equation stiU appHes but is subject to different boundary conditions. The resulting current distribution is called a secondary current distribution. Here, for linear kinetics the current distribution is characterized by the Wagner number, Wa, a dimensionless ratio of kinetic to ohmic resistance. [Pg.66]

The addition of primary and secondary alcohols proceeds not only in the presence of acid but also in neutral solution (62JCS1591, 65JCS6930, 71JCS(B)2423). Stable 1 1 mono- and 2 1 di-(T-adducts were found and characterized spectrally, r-Butyl alcohol does not form adducts for steric reasons. [Pg.287]

The volumetric coefficient h a from the combination of Eqs. (14-178) and (14-179) is useful in defining the effect of variable changes but is limited in value because of its dependence on D. The prodiicl of area and coefficient obtained from a given mass of hqiiid is proportional to (1/D ) for small diameters. The prime problem is that droplet-size estimating procedures are often no better than 50 percent. A secondary problem is that there is no that truly characterizes either the motion or transfer process for the whole spectrum of particle sizes present. See Eqs. (14-193) and (14-194). [Pg.1402]

For each fold one searches for the best alignment of the target sequence that would be compatible with the fold the core should comprise hydrophobic residues and polar residues should be on the outside, predicted helical and strand regions should be aligned to corresponding secondary structure elements in the fold, and so on. In order to match a sequence alignment to a fold, Eisenberg developed a rapid method called the 3D profile method. The environment of each residue position in the known 3D structure is characterized on the basis of three properties (1) the area of the side chain that is buried by other protein atoms, (2) the fraction of side chain area that is covered by polar atoms, and (3) the secondary stmcture, which is classified in three states helix, sheet, and coil. The residue positions are rather arbitrarily divided into six classes by properties 1 and 2, which in combination with property 3 yields 18 environmental classes. This classification of environments enables a protein structure to be coded by a sequence in an 18-letter alphabet, in which each letter represents the environmental class of a residue position. [Pg.353]


See other pages where Secondary characterization is mentioned: [Pg.25]    [Pg.515]    [Pg.516]    [Pg.25]    [Pg.515]    [Pg.516]    [Pg.543]    [Pg.559]    [Pg.1515]    [Pg.1851]    [Pg.2783]    [Pg.1291]    [Pg.99]    [Pg.192]    [Pg.417]    [Pg.111]    [Pg.245]    [Pg.355]    [Pg.248]    [Pg.254]    [Pg.495]    [Pg.353]    [Pg.433]    [Pg.203]    [Pg.214]    [Pg.417]    [Pg.453]    [Pg.37]    [Pg.236]    [Pg.443]    [Pg.2064]    [Pg.2134]    [Pg.58]    [Pg.123]    [Pg.14]    [Pg.94]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Secondary metabolites characterization

© 2024 chempedia.info