Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary amines reductive amination

Reduction o/In Situ Generated Imines and Iminium Salts of Ammonia, Primary and Secondary-Amines Reductive Amination... [Pg.25]

Reduction of a nitrosamine to a secondary amine. Proceed as for a nitro compound. Determine the solubility of the residue after evaporation of the ether and also its behaviour towards benzenesulphonyl (or p-toluenesulphonyl) chloride. [Pg.1076]

Based on the above-mentioned stereochemistry of the allylation reactions, nucleophiles have been classified into Nu (overall retention group) and Nu (overall inversion group) by the following experiments with the cyclic exo- and ent/n-acetales 12 and 13[25], No Pd-catalyzed reaction takes place with the exo-allylic acetate 12, because attack of Pd(0) from the rear side to form Tr-allyl-palladium is sterically difficult. On the other hand, smooth 7r-allylpalladium complex formation should take place with the endo-sWyWc acetate 13. The Nu -type nucleophiles must attack the 7r-allylic ligand from the endo side 14, namely tram to the exo-oriented Pd, but this is difficult. On the other hand, the attack of the Nu -type nucleophiles is directed to the Pd. and subsequent reductive elimination affords the exo products 15. Thus the allylation reaction of 13 takes place with the Nu nucleophiles (PhZnCl, formate, indenide anion) and no reaction with Nu nucleophiles (malonate. secondary amines, LiP(S)Ph2, cyclopentadienide anion). [Pg.294]

Reductive amination has been successfully applied to the preparation of tertiary amines from carbonyl compounds and secondary amines even though a neutral mine is not possible m this case... [Pg.934]

Reductive amination of cyclohexanone using primary and secondary aHphatic amines provides A/-alkylated cyclohexylamines. Dehydration to imine for the primary amines, to endocycHc enamine for the secondary amines is usually performed in situ prior to hydrogenation in batch processing. Alternatively, reduction of the /V-a1ky1ani1ines may be performed, as for /V,/V-dimethy1 cyclohexyl amine from /V, /V- di m e th y1 a n i1 i n e [121 -69-7] (12,13). One-step routes from phenol and the alkylamine (14) have also been practiced. [Pg.208]

DCHA is normally obtained in low yields as a coproduct of aniline hydrogenation. The proposed mechanism of secondary amine formation in either reductive amination of cyclohexanone or arene hydrogenation iHurninates specific steps (Fig. 1) on which catalyst, solvents, and additives moderating catalyst supports all have effects. [Pg.208]

In addition to the nitrile and alcohol routes for fatty amine preparation, processes have been described by Unocal and Pennwalt Corporation, using an olefin and secondary amine (14—16) by Texaco Inc., hydrogenation of nitroparaffins (17—20) by Onyx Corporation, reaction of an alkyl haUde with secondary amines (21,22) by Henkel Cie, GmbH, reduction of an ester in the presence of a secondary amine (23) by catalytic hydroammonolysis of carboxyhc acids (24) and by the Hofmann rearrangement (25). [Pg.220]

A mixture of primary and secondary amines is formed when ammonia is not used during the nitrile reduction. It is possible to prepare high purity secondary amines by carrying the reduction out at low pressure and passing hydrogen through the reaction in a batch process (47,48),... [Pg.220]

Alkyl dimethyl and dialkylmethyl tertiary amines are commercially available. These amines are prepared by reductive methylation of primary and secondary amines using formaldehyde and nickel catalysts (1,3,47,48). The asymmetrical tertiary amines are used as reactive intermediates for preparing many commercial products. [Pg.220]

Direct ammonolysis involving dehydratioa catalysts is geaerahy ma at higher temperatures (300—500°C) and at about the same pressure as reductive ammonolysis. Many catalysts are active, including aluminas, siUca, titanium dioxide [13463-67-7], and aluminum phosphate [7784-30-7] (41—43). Yields are acceptable (>80%), and coking and nitrile formation are negligible. However, Htfle control is possible over the composition of the mixture of primary and secondary amines that can be obtained. [Pg.106]

Primary and secondary amines are usually converted to tertiary amines using formaldehyde and hydrogen in the presence of a catalyst (eqs. 5 and 6). This process, known as reductive alkylation (222), is attractive commercially. The desired amines are produced in high yields and without significant by-product formation. Quatemization by reaction of an appropriate alkylating reagent then follows. [Pg.380]

Pyridoxal Derivatives. Various aldehydes of pyridoxal (Table 3) react with hemoglobin at sites that can be somewhat controlled by the state of oxygenation (36,59). It is thereby possible to achieve derivatives having a wide range of functional properties. The reaction, shown for PLP in Figure 3, involves first the formation of a Schiff s base between the amino groups of hemoglobin and the aldehyde(s) of the pyridoxal compound, followed by reduction of the Schiff s base with sodium borohydride, to yield a covalendy-linked pyridoxyl derivative in the form of a secondary amine. [Pg.163]

A -Nitroso derivatives, prepared from secondary amines and nitrous acid, are cleaved by reduction (H2/Raney Ni, EtOH, 28°, 3.5 h CuCl/concd. HCl"). Since many V-nitroso compounds are carcinogens, and because some racemization and cyclodehydration of V-nitroso derivatives of V-alkyl amino acids occur during peptide syntheses, V-nitroso derivatives are of limited value as protective groups. [Pg.374]

Other secondary amines such as pyrrolidine, di- -butylamine, tetrahydro-quinoline, n-benzylamine, and piperidine were also found to be capable of effecting this reduction. Interestingly, morpholine does not reduce enamines as readily (47) and its acid-catalyzed reaction with norbornanone was reported (45) to give only the corresponding enamine (93), although trace amounts of the reduction product were detected when cyclohexanone was treated with morpholine under these conditions (47a). The yield of morpholine reduction product was increased by using higher temperatures. [Pg.28]

The reduction was studied in more detail by Cook and Schulz (52). They demonstrated conclusively that reduction of iminium salts by secondary amines is possible as illustrated in Eqs. (7) and (8). The oxidation... [Pg.66]

In both cases, the hydride ion approaches the double bond from the sterically more accessible side of the molecule. Reduction of imines by metals and acids, electrolytically or by formic acid gives saturated secondary amines (38,255). [Pg.289]

While enamines can usually be obtained directly from ketones and secondary amines their formation by an indirect route may bo advantageous. The previously mentioned condensation of rnethyl ketones during azeotropic enamine formation has prompted the alklyation (J) or acylation and reduction (59) of Schiff s bases. A parallel method uses the formation and desulfurization of N-acylthiazolines followed by hydride reduetion (60,61). [Pg.321]

An unexpected reduction of enamines by secondary amines such as pyrrolidine, piperidine, and particularly hexamethyleneimine was discovered in the formation of the norbomanone enamines and extended to hexamethyleneiminocyclopentene (561,562). [Pg.431]

In an analogous sequence, reductive alkylation of aminoalcohol, 46, with cyclohexanone affords the secondary amine (47). Acylation with benzoyl chloride affords hexylcaine (48) in a reaction that may again involve acyl migration. [Pg.12]

In a variation on this approach, p-chlorobenzaldehyde is rst condensed with 2-aminopyridine. Reduction of the resulting iff base (62) affords the corresponding secondary amine. Alkyl-ion with the usual side chain affords the antihistamine, chlor-ramine (64). ... [Pg.51]

Aminonitrile formation on 125 with potassium cyanide and piperidine hydrochloride affords the derivative, 135. Hydrolysis as above gives the corresponding amide (136). Debenzylation is accomplished by catalytic reduction. Alkylation of the secondary amine with the side chain (96) used in the preparation of diphenoxylate affords pirintramide (138) This compound, interest-... [Pg.308]


See other pages where Secondary amines reductive amination is mentioned: [Pg.28]    [Pg.42]    [Pg.198]    [Pg.550]    [Pg.361]    [Pg.200]    [Pg.208]    [Pg.220]    [Pg.311]    [Pg.226]    [Pg.99]    [Pg.82]    [Pg.892]    [Pg.76]    [Pg.92]    [Pg.19]    [Pg.57]    [Pg.67]    [Pg.214]    [Pg.30]    [Pg.415]    [Pg.51]    [Pg.338]    [Pg.349]    [Pg.350]    [Pg.46]    [Pg.68]    [Pg.119]   
See also in sourсe #XX -- [ Pg.911 ]




SEARCH



Amination secondary

Amines secondary

Reductive alkylation secondary amine formation

Reductive aminations, secondary amines, sulfonic acid

Secondary amines through reductive amination

Secondary amines, from reductive alkylation

Secondary amines, from reductive alkylation amination)

© 2024 chempedia.info