Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schrodinger equation quantum numbers

Much of quantum chemistry attempts to make more quantitative these aspects of chemists view of the periodic table and of atomic valence and structure. By starting from first principles and treating atomic and molecular states as solutions of a so-called Schrodinger equation, quantum chemistry seeks to determine what underlies the empirical quantum numbers, orbitals, the aufbau principle and the concept of valence used by spectroscopists and chemists, in some cases, even prior to the advent of quantum mechanics. [Pg.7]

THE SCHRODINGER EQUATION AND SOME OF ITS SOLUTIONS Table 1.3 Some values of the nuclear spin quantum number / 19... [Pg.19]

Having stated the limitations (non-relativistic Hamilton operator and the Bom-Oppenheimer approximation), we are ready to consider the electronic Schrodinger equation. It can only be solved exactly for the Hj molecule, and similar one-electron systems. In the general case we have to rely on approximate (numerical) methods. By neglecting relativistic effects, we also have to introduce electron spin as an ad hoc quantum effect. Each electron has a spin quantum number of 1 /2. In the presence of an... [Pg.57]

The Dirac equation automatically includes effects due to electron spin, while this must be introduced in a more or less ad hoc fashion in the Schrodinger equation (the Pauli principle). Furthermore, once the spin-orbit interaction is included, the total electron spin is no longer a good quantum number, an orbital no longer contains an integer number of a and /) spin functions. The proper quantum number is now the total angular momentum obtained by vector addition of the orbital and spin moments. [Pg.209]

The Schrodinger equation can be solved approximately for atoms with two or more electrons. There are many solutions for the wave function, ij/, each associated with a set of numbers called quantum numbers. Three such numbers are given the symbols n, , and mi. A wave function corresponding to a particular set of three quantum numbers (e.g., n = 2, = 1, mi = 0) is associated with an electron occupying an atomic orbital. From the expression for ij/y we can deduce the relative energy of that orbital, its shape, and its orientation in space. [Pg.140]

The quantum number ms was introduced to make theory consistent with experiment. In that sense, it differs from the first three quantum numbers, which came from the solution to the Schrodinger wave equation for the hydrogen atom. This quantum number is not related to n, , or mi. It can have either of two possible values ... [Pg.141]

Suppose we get a little more sophisticated about our question. The more advanced student might respond that the periodic table can be explained in terms of the relationship between the quantum numbers which themselves emerge from the solutions to the Schrodinger equation for the hydrogen atom.5... [Pg.97]

As many textbooks correctly report, the number of electrons that can be accommodated into any electron shell coincides with the range of values for the three quantum numbers that characterize the solutions to the Schrodinger equation for the hydrogen atom and the fourth quantum number as first postulated by Pauli. [Pg.134]

In order to evaluate the above expression, solutions were found for the Schrodinger equation using the Morse potential for rotational quantum number i not equal to zero ... [Pg.91]

Quantum mechanical effects—tunneling and interference, resonances, and electronic nonadiabaticity— play important roles in many chemical reactions. Rigorous quantum dynamics studies, that is, numerically accurate solutions of either the time-independent or time-dependent Schrodinger equations, provide the most correct and detailed description of a chemical reaction. While hmited to relatively small numbers of atoms by the standards of ordinary chemistry, numerically accurate quantum dynamics provides not only detailed insight into the nature of specific reactions, but benchmark results on which to base more approximate approaches, such as transition state theory and quasiclassical trajectories, which can be applied to larger systems. [Pg.2]

In addition to size, an atomic orbital also has a specific shape. The solutions for the Schrodinger equation and experimental evidence show that orbitals have a variety of shapes. A second quantum number indexes the shapes of atomic orbitals. This quantum number is the azimuthal quantum number (1). [Pg.470]

The third solution to Schrodinger s equation produces the magnetic quantum number, usually designated as m. Allowable values of this quantum number range from -f to +f. A summary of... [Pg.45]

Magnetic quantum number One solution to Schrodinger s wave equation produces the magnetic quantum number. It specifies how the s, p, d, and/orbitals are oriented in space. [Pg.121]

The exact form of the wavefunction is also conditioned, however, by the observation that electrons possess spin quantum numbers of either +f of Consequently, physically correct solutions to the Schrodinger equation (2.1) must be antisymmetric. Mathematically, this condition can be written as ... [Pg.14]

A spinning electron also has a spin quantum number that is expressed as 1/2 in units of ti. However, that quantum number does not arise from the solution of a differential equation in Schrodinger s solution of the hydrogen atom problem. It arises because, like other fundamental particles, the electron has an intrinsic spin that is half integer in units of ti, the quantum of angular momentum. As a result, four quantum numbers are required to completely specify the state of the electron in an atom. The Pauli Exclusion Principle states that no two electrons in the same atom can have identical sets of four quantum numbers. We will illustrate this principle later. [Pg.45]

Unfortunately, the Schrodinger equation for multi-electron atoms and, for that matter, all molecules cannot be solved exactly and does not lead to an analogous expression to Equation 4.5 for the quantised energy levels. Even for simple atoms such as sodium the number of interactions between the particles increases rapidly. Sodium contains 11 electrons and so the correct quantum mechanical description of the atom has to include 11 nucleus-electron interactions, 55 electron-electron repulsion interactions and the correct description of the kinetic energy of the nucleus and the electrons - a further 12 terms in the Hamiltonian. The analysis of many-electron atomic spectra is complicated and beyond the scope of this book, but it was one such analysis performed by Sir Norman Lockyer that led to the discovery of helium on the Sun before it was discovered on the Earth. [Pg.100]

Ab initio quantum mechanics is based on a rigorous treatment of the Schrodinger equation (or equivalent matrix methods)4-7 which is intellectually satisfying. While there are a number of approximations made, it relies on a set of equations and a few physical constants.8 The use of ab initio methods on large systems is limited if not impossible, even with the fastest computers available. Since the size of an ab initio calculation is defined by the number of basis functions in the system, ab initio calculations are extremely costly for anything past the second row in the periodic table, and for all systems with more than 20 or 30 total atoms. [Pg.38]

Schrodinger s equation has solutions characterized by three quantum numbers only, whereas electron spin appears naturally as a solution of Dirac s relativistic equation. As a consequence it is often stated that spin is a relativistic effect. However, the fact that half-integral angular momentum states, predicted by the ladder-operator method, are compatible with non-relativistic systems, refutes this conclusion. The non-appearance of electron... [Pg.237]


See other pages where Schrodinger equation quantum numbers is mentioned: [Pg.476]    [Pg.533]    [Pg.229]    [Pg.45]    [Pg.35]    [Pg.1553]    [Pg.55]    [Pg.31]    [Pg.150]    [Pg.34]    [Pg.18]    [Pg.157]    [Pg.8]    [Pg.42]    [Pg.107]    [Pg.148]    [Pg.65]    [Pg.189]    [Pg.44]    [Pg.69]    [Pg.322]    [Pg.253]    [Pg.688]    [Pg.172]    [Pg.441]    [Pg.447]    [Pg.466]    [Pg.718]    [Pg.100]    [Pg.8]    [Pg.303]    [Pg.347]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



Equations numbering

Quantum Schrodinger

Quantum number numbers

Quantum numbers

Schrodinger equation, quantum

© 2024 chempedia.info