Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scanning, rapid kinetics

The condensation chemistry allows films of various compositions, as the addition of sulfate renders the materials amorphous over a range of concentrations as implied by the acronym HafSOx, where x typically assumes values of 0.3-1 (refer to Fig. 4.3, where the top reaction sequence represents x = 0.5.) The amorphous character and structural integrity are retained until the material decomposes with stoichiometric loss of S03(g) at approximately 700 °C. The smoothness and uniformity of deposited films are illustrated by the Scanning electron microscope (SEM) images in Fig. 4.4. Rapid kinetics, absence of organics, and facile condensation all play important roles in the deposition of these dense HafSOx films. [Pg.115]

The chromophoric pyridoxal phosphate coenzyme provides a useful spectrophotometric probe of catalytic events and of conformational changes that occur at the pyridoxal phosphate site of the P subunit and of the aiPi complex. Tryptophan synthase belongs to a class of pyridoxal phosphate enzymes that catalyze /3-replacement and / -elimination reactions.3 The reactions proceed through a series of pyridoxal phosphate-substrate intermediates (Fig. 7.6) that have characteristic spectral properties. Steady-state and rapid kinetic studies of the P subunit and of the aiPi complex in solution have demonstrated the formation and disappearance of these intermediates.73-90 Fig. 7.7 illustrates the use of rapid-scanning stopped-flow UV-visible spectroscopy to investigate the effects of single amino acid substitutions in the a subunit on the rate of reactions of L-serine at the active site of the P subunit.89 Formation of enzyme-substrate intermediates has also been observed with the 012P2 complex in the crystalline state.91 ... [Pg.133]

Of the three SECM modes that can be used to study electrode reaction mechanisms—the TG/SC, feedback, and SG/TC modes—the former is the most powerful for measuring rapid kinetics. With this approach, fast followup and sandwiched chemical reactions can be characterized under steady-state conditions, which are difficult to study even with rapid transient techniques such as fast scan cyclic voltammetry or double potential step chronoamperometry, where extensive corrections for background currents are often mandatory (44). At present, first- and second-order rate constants up to 105 s 1 and 1010 M 1 s, respectively, should be measurable with SECM. The development of smaller tip and substrate electrodes that can be placed closer together should facilitate the detection and characterization of electrogenerated species with submirosecond lifetimes. In this context, the introduction of a fabrication procedure for spherical UMEs with diameters... [Pg.295]

Electrochemical timescales are of importance when one desires to measure the kinetics of an electrochemical process. Changing the rate of mass transport by convection, the shape or size of the electrode, and scan rate can vary the timescale. There is a quadratic dependence of the timescale upon the radius of the electrode, favoring microelectrodes, therefore, for rapid kinetic measurements. A timescale as short as 10 ps can be accessed using a microjet electrode. The reader is referred to an excellent analysis by Bond and co-workers. ... [Pg.436]

The techniques referred to above (Sects. 1—3) may be operated for a sample heated in a constant temperature environment or under conditions of programmed temperature change. Very similar equipment can often be used differences normally reside in the temperature control of the reactant cell. Non-isothermal measurements of mass loss are termed thermogravimetry (TG), absorption or evolution of heat is differential scanning calorimetry (DSC), and measurement of the temperature difference between the sample and an inert reference substance is termed differential thermal analysis (DTA). These techniques can be used singly [33,76,174] or in combination and may include provision for EGA. Applications of non-isothermal measurements have ranged from the rapid qualitative estimation of reaction temperature to the quantitative determination of kinetic parameters [175—177]. The evaluation of kinetic parameters from non-isothermal data is dealt with in detail in Chap. 3.6. [Pg.23]

Figure 12.13 Electrochemistry and kinetics of CO resulting from methanol decomposition on polycrystalline Pt with O.IM H2SO4 electrol3de and 0.1 M methanol, (a-d) Current, SFG amphtude, frequency, and width of adsorbed CO, scanning the potential in both directions as indicated with the solid hne and fiUed circles denoting the forward (anodic) scan and the dashed hne and unfilled circles denoting the back (cathodic) scan, (e-g) Starting at 0.6 V, where the adsorbed CO is rapidly electro-oxidized, the potential is suddenly jumped to 0.2 V. The reformation of the CO layer (CO chemisorption) due to methanol decomposition occurs in about 20 s. The adsorbed CO molecules are redshifted, and have a broader spectrum at shorter times, when the adlayer coverage is low. Figure 12.13 Electrochemistry and kinetics of CO resulting from methanol decomposition on polycrystalline Pt with O.IM H2SO4 electrol3de and 0.1 M methanol, (a-d) Current, SFG amphtude, frequency, and width of adsorbed CO, scanning the potential in both directions as indicated with the solid hne and fiUed circles denoting the forward (anodic) scan and the dashed hne and unfilled circles denoting the back (cathodic) scan, (e-g) Starting at 0.6 V, where the adsorbed CO is rapidly electro-oxidized, the potential is suddenly jumped to 0.2 V. The reformation of the CO layer (CO chemisorption) due to methanol decomposition occurs in about 20 s. The adsorbed CO molecules are redshifted, and have a broader spectrum at shorter times, when the adlayer coverage is low.
Both Porter s original flash photolysis apparatus and Pimentel s rapid scan spectrometer recorded the whole spectral region in a time which was short compared to the decay of the transient species. Kinetic information was obtained by repeatedly firing the photolytic flash lamp and making each spectroscopic measurement at a different time delay after each flash. The decay rate could then be extracted from this series of delayed spectra. Such a process clearly has limitations, particularly for IR measurements, where the decay must be slow compared to the scan rate of the spectrum. [Pg.289]

Although there are other ways, one of the most convenient and rapid ways to measure AH is by differential scanning calorimetry. When the temperature is reached at which a phase transition occurs, heat is absorbed, so more heat must flow to the sample in order to keep the temperature equal to that of the reference. This produces a peak in the endothermic direction. If the transition is readily reversible, cooling the sample will result in heat being liberated as the sample is transformed into the original phase, and a peak in the exothermic direction will be observed. The area of the peak is proportional to the enthalpy change for transformation of the sample into the new phase. Before the sample is completely transformed into the new phase, the fraction transformed at a specific temperature can be determined by comparing the partial peak area up to that temperature to the total area. That fraction, a, determined as a function of temperature can be used as the variable for kinetic analysis of the transformation. [Pg.275]

An alternative electrochemical method has recently been used to obtain the standard potentials of a series of 31 PhO /PhO- redox couples (13). This method uses conventional cyclic voltammetry, and it is based on the CV s obtained on alkaline solutions of the phenols. The observed CV s are completely irreversible and simply show a wave corresponding to the one-electron oxidation of PhO-. The irreversibility is due to the rapid homogeneous decay of the PhO radicals produced, such that no reverse wave can be detected. It is well known that PhO radicals decay with second-order kinetics and rate constants close to the diffusion-controlled limit. If the mechanism of the electrochemical oxidation of PhO- consists of diffusion-limited transfer of the electron from PhO- to the electrode and the second-order decay of the PhO radicals, the following equation describes the scan-rate dependence of the peak potential ... [Pg.368]

Reviews on the activation of dioxygen by transition-metal complexes have appeared recently 9497 ). Details of the underlying reaction mechanisms could in some cases be resolved from kinetic studies employing rapid-scan and low-temperature kinetic techniques in order to detect possible reaction intermediates and to analyze complex reaction sequences. In many cases, however, detailed mechanistic insight was not available, and high-pressure experiments coupled to the construction of volume profiles were performed in efforts to fulfill this need. [Pg.23]

As the kinetic parameter Ahset decreases, either because the standard rate constant decreases or because the scan rate is increased, the cyclic voltammetric response passes rapidly from the symmetrical reversible Nernstian pattern described in Section 1.2.1 to an asymmetrical irreversible curve, while the cathodic peak shifts in the cathodic direction and the anodic peak shifts in the anodic direction. [Pg.45]

These observations are in accord with a scheme involving a reversible electron transfer, followed by a reaction that depletes the concentration of the initially formed reduced species, R. They are also reminiscent of the observations made earlier in regard to the electrohydrocyclization process. The greater the rate of the follow-up process, the more significant its effect on the concentration of R in a given time period, that associated with the CV scan rate, for example. From a moments consideration of the Nernst equation, it is clear that this event should manifest itself in terms of a shift in the peak potential to a more positive value, as observed for 255 and 257b [4]. In the present instance, it is suggested that a rapid or concerted loss of the mesylate anion in the reductive cyclization is likely to be associated with this so-called kinetic shift of the peak potentials [69]. [Pg.36]

In the reverse direction, a proton may be effective by aiding ring-opening directly or via a reactive protonated species. It may intervene with the ring-opened species. A splendid example of these effects is shown in the acid hydrolysis of ferrioxamine B (9). Four stages can be separated and the kinetics and equilibria have been characterized by stopped-flow and rapid-scan spectral methods. [Pg.222]

A kinetic smdy of the formation of zwitterionic adducts (28) from 1,3,5-trinitrobenzene and diazabicyclo derivatives indicates that reactions are surprisingly slow, with rate constants many orders of magnitude lower than those for related reactions with primary or secondary amines. The use of rapid-scan spectrophotometry was necessary to study the kinetics of reaction of 4-substimted-2,6-dinitro-A -n-butylanilines (29) with n-butylamine in DMSO the two processes observed were identified as rapid deprotonation to give the conjugate base and competitive a-adduct formation at the 3-position. The reactions of MAf-di-n-propyl-2,6-dinitro-4-trifluoromethylaniline (30), the herbicide trifluralin, and its A -ethyl-A -n-butyl analogue with deuteroxide ions and with sulfite ions in [ H6]DMS0-D20 have been investigated by H NMR spectroscopy. With deuteroxide a-adduct formation at the 3-position is followed by... [Pg.283]

Later, Smith and coworkers succeeded in measuring rate constants of the reaction of MeLi with a carbonyl compound at various reagent concentrations with a stopped-flow/rapid scan spectroscopic method, and demonstrated that the reaction also exhibited a fractional kinetic order . Thus, the reaction of 2,4-dimethyl-4 -methylmercaptobenzophenone with MeLi in diethyl ether at 25 °C showed one-fourth order in MeLi in the concentration range of MeLi between 3.9 mM and 480 mM (Figure 1). The rate constant was 200 7 M s . Under these conditions, the monomer was considered the reactive species that exists in equilibrium with the tetramer. Addition of LiBr or Lil depressed the reaction rate but did not change the kinetic order. The same... [Pg.904]

To investigate the origin of the very high hydroformylation and isomerization activity of ligand 33, we measured the rate of CO dissociation from the HRh(dipho-sphine)(CO)2 complex using labeling in rapid-scan IR experiments [54]. The CO dissociation rate constants, ki, can be obtained by exchanging CO for CO in the HRh(diphosphine)( CO)2 complexes [52].The CO dissociation proceeds via a dissociative mechanism and consequently obeys simple first-order kinetics. The rate constants kj can, therefore, be derived from Eqs. (5) and (6). [Pg.260]

Fiomogeneous cross-reaction electron-transfer kinetic studies suggest that many other Cu(II/I) systems obey Scheme 1. However, few Cu(II/I) systems have been subjected to sufficiently low temperature or rapid-scan CV measurements to demonstrate the presence of rate-limiting conformational changes. [Pg.1027]


See other pages where Scanning, rapid kinetics is mentioned: [Pg.94]    [Pg.313]    [Pg.73]    [Pg.40]    [Pg.105]    [Pg.40]    [Pg.105]    [Pg.161]    [Pg.509]    [Pg.192]    [Pg.249]    [Pg.73]    [Pg.127]    [Pg.367]    [Pg.512]    [Pg.316]    [Pg.74]    [Pg.392]    [Pg.150]    [Pg.57]    [Pg.161]    [Pg.428]    [Pg.373]    [Pg.121]    [Pg.15]    [Pg.421]    [Pg.608]    [Pg.659]    [Pg.139]    [Pg.261]    [Pg.193]    [Pg.722]    [Pg.729]    [Pg.455]   
See also in sourсe #XX -- [ Pg.169 , Pg.170 , Pg.171 , Pg.172 , Pg.173 , Pg.174 , Pg.175 , Pg.176 , Pg.177 , Pg.178 , Pg.179 ]




SEARCH



Kinetics, rapid scanning techniques

Scanning, rapid

Stopped-flow kinetics, rapid scanning techniques

© 2024 chempedia.info