Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Scalar transport models

Similarly, turbulent scalar transport models based on (1.28) for the case where the chemical source term is null have been widely studied. Because (1.28) in the absence... [Pg.36]

For example, the RTD can be computed from the results of a turbulent-scalar transport model, but not vice versa. [Pg.44]

Owing to the complexity of multi-point descriptions, almost all scalar transport models for complex flows are based on one-point statistics. As shown in Section 2.1, one-point turbulence statistics are found by integrating over the velocity sample space. Likewise,... [Pg.99]

In general, liquid-phase reactions (Sc > 1) and fast chemistry are beyond the range of DNS. The treatment of inhomogeneous flows (e.g., a chemical reactor) adds further restrictions. Thus, although DNS is a valuable tool for studying fundamentals,4 it is not a useful tool for chemical-reactor modeling. Nonetheless, much can be learned about scalar transport in turbulent flows from DNS. For example, valuable information about the effect of molecular diffusion on the joint scalar PDF can be easily extracted from a DNS simulation and used to validate the micromixing closures needed in other scalar transport models. [Pg.123]

Relative to velocity, composition PDF codes, the turbulence and scalar transport models have a limited range of applicability. This can be partially overcome by using an LES description of the turbulence. However, consistent closure at the level of second-order RANS models requires the use of a velocity, composition PDF code. [Pg.373]

A theoretical framework based on the one-point, one-time joint probability density function (PDF) is developed. It is shown that all commonly employed models for turbulent reacting flows can be formulated in terms of the joint PDF of the chemical species and enthalpy. Models based on direct closures for the chemical source term as well as transported PDF methods, are covered in detail. An introduction to the theory of turbulence and turbulent scalar transport is provided for completeness. [Pg.2]

The CSTR model can be derived from the fundamental scalar transport equation (1.28) by integrating the spatial variable over the entire reactor volume. This process results in an integral for the volume-average chemical source term of the form ... [Pg.25]

A general overview of models for turbulent transport is presented in Chapter 4. The goal of this chapter is to familiarize the reader with the various closure models available in the literature. Because detailed treatments of this material are readily available in other texts (e.g., Pope 2000), the emphasis of Chapter 4 is on presenting the various models using notation that is consistent with the remainder of the book. However, despite its relative brevity, the importance of the material in Chapter 4 should not be underestimated. Indeed, all of the reacting-flow models presented in subsequent chapters depend on accurate predictions of the turbulent flow field. With this caveat in mind, readers conversant with turbulent transport models of non-reacting scalars may wish to proceed directly to Chapter 5. [Pg.45]

This chapter is devoted to methods for describing the turbulent transport of passive scalars. The basic transport equations resulting from Reynolds averaging have been derived in earlier chapters and contain unclosed terms that must be modeled. Thus the available models for these terms are the primary focus of this chapter. However, to begin the discussion, we first review transport models based on the direct numerical simulation of the Navier-Stokes equation, and other models that do not require one-point closures. The presentation of turbulent transport models in this chapter is not intended to be comprehensive. Instead, the emphasis is on the differences between particular classes of models, and how they relate to models for turbulent reacting flow. A more detailed discussion of turbulent-flow models can be found in Pope (2000). For practical advice on choosing appropriate models for particular flows, the reader may wish to consult Wilcox (1993). [Pg.119]

The last term on the right-hand side is unclosed and represents scalar transport due to velocity fluctuations. The turbulent scalar flux ( , varies on length scales on the order of the turbulence integral scales Lu, and hence is independent of molecular properties (i.e., v and T).17 In a CFD calculation, this implies that the grid size needed to resolve (4.70) must be proportional to the integral scale, and not the Batchelor scale as required in DNS. In this section, we look at two types of models for the scalar flux. The first is an extension of turbulent-viscosity-based models to describe the scalar field, while the second is a second-order model that is used in conjunction with Reynolds-stress models. [Pg.140]

This type of model is usually referred to as an algebraic scalar-flux model. Similarmodels for the Reynolds-stress tensor are referred to as algebraic second-moment (ASM) closures. They can be derived from the scalar-flux transport equation by ignoring time-dependent and spatial-transport terms. [Pg.141]

A number of different authors have proposed transport models for the scalar dissipation rate in the same general scale-similarity form as (4.47) ... [Pg.145]

In summary, in the equilibrium-chemistry limit, the computational problem associated with turbulent reacting flows is greatly simplified by employing the presumed mixture-fraction PDF method. Indeed, because the chemical source term usually leads to a stiff system of ODEs (see (5.151)) that are solved off-line, the equilibrium-chemistry limit significantly reduces the computational load needed to solve a turbulent-reacting-flow problem. In a CFD code, a second-order transport model for inert scalars such as those discussed in Chapter 3 is utilized to find ( ) and and the equifibrium com-... [Pg.199]

Of all of the methods reviewed thus far in this book, only DNS and the linear-eddy model require no closure for the molecular-diffusion term or the chemical source term in the scalar transport equation. However, we have seen that both methods are computationally expensive for three-dimensional inhomogeneous flows of practical interest. For all of the other methods, closures are needed for either scalar mixing or the chemical source term. For example, classical micromixing models treat chemical reactions exactly, but the fluid dynamics are overly simplified. The extension to multi-scalar presumed PDFs comes the closest to providing a flexible model for inhomogeneous turbulent reacting flows. Nevertheless, the presumed form of the joint scalar PDF in terms of a finite collection of delta functions may be inadequate for complex chemistry. The next step - computing the shape of the joint scalar PDF from its transport equation - comprises transported PDF methods and is discussed in detail in the next chapter. Some of the properties of transported PDF methods are listed here. [Pg.258]

There is no direct information on scalar transport due to velocity fluctuations. A PDF scalar-flux model is required to describe turbulent scalar transport.2... [Pg.261]

In transported PDF methods (Pope 2000), the closure model for A, V, ip) will be a known function26 ofV. Thus, (U,Aj) will be closed and will depend on the moments of U and their spatial derivatives.27 Moreover, Reynolds-stress models derived from the PDF transport equation are guaranteed to be realizable (Pope 1994b), and the corresponding consistent scalar flux model can easily be found. We shall return to this subject after looking at typical conditional acceleration and conditional diffusion models. [Pg.273]

Kerstein, A. R. (1988). A linear-eddy model of turbulent scalar transport and mixing. [Pg.416]

Moin, P., K. Squires, W. Cabot, and S. Lee. 1991. A dynamic subgrid-scale model for compressible turbulence and scalar transport. J. Physics Fluids 3(ll) 2746-57. [Pg.172]

Closure of the mean scalar field equation requires a model for the scalar flux term. This term represents the scalar transport due to velocity fluctuations in the inertial subrange of the energy spectrum and is normally independent of the molecular diffusivity. The gradient diffusion model is often successfully employed (e.g., [15, 78, 2]) ... [Pg.710]

The remaining scalar transport equations, like the k-e turbulence model, are solved in the same wav as the discrete scalar transport equation (12.183). [Pg.1070]


See other pages where Scalar transport models is mentioned: [Pg.99]    [Pg.79]    [Pg.80]    [Pg.99]    [Pg.79]    [Pg.80]    [Pg.296]    [Pg.44]    [Pg.127]    [Pg.128]    [Pg.139]    [Pg.142]    [Pg.278]    [Pg.283]    [Pg.573]    [Pg.80]    [Pg.183]    [Pg.25]    [Pg.108]    [Pg.109]    [Pg.120]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Modelling transport

Scalar

Scalar transport

Transport modeling

Transport models

© 2024 chempedia.info