Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Saturation, nmr

Bain A D and Duns G J 1994 Simultaneous determination of spin-lattioe (T1) and spin-spin (T2) relaxation times in NMR a robust and faoile method for measuring T2. Optimization and data analysis of the offset-saturation experiment J. Magn. Reson. A 109 56-64... [Pg.2113]

Protonation of formic acid similarly leads, after the formation at low temperature of the parent carboxonium ion, to the formyl cation. The persistent formyl cation was observed by high-pressure NMR only recently (Horvath and Gladysz). An equilibrium with diprotonated carbon monoxide causing rapid exchange can be involved, which also explains the observed high reactivity of carbon monoxide in supera-cidic media. Not only aromatic but also saturated hydrocarbons (such as isoalkanes and adamantanes) can be readily formylated. [Pg.196]

Noncondensed aromatic or satured selenated heterocycles are little mentioned in NMR or mass spectrometry literature. [Pg.274]

Direct quantitation of receptor concentrations and dmg—receptor interactions is possible by a variety of techniques, including fluorescence, nmr, and radioligand binding. The last is particularly versatile and has been appHed both to sophisticated receptor quantitation and to dmg screening and discovery protocols (50,51). The use of high specific activity, frequendy pH]- or p lj-labeled, dmgs bound to cmde or purified cellular materials, to whole cells, or to tissue shces, permits the determination not only of dmg—receptor saturation curves, but also of the receptor number, dmg affinity, and association and dissociation kinetics either direcdy or by competition. Complete theoretical and experimental details are available (50,51). [Pg.276]

Cyclosporin A forms white prismatic crystals from acetone and is only slightly soluble in water and saturated hydrocarbons, but is very soluble in methanol, ethanol, acetone, and diethyl ether. Optical and nmr data on cyclosporins and x-ray crystallographic data on cyclosporin A and an io do derivative have been reviewed (273,275). [Pg.159]

Cyanuric acid is a titrable weak acid (pffai — 6.88, pifa2 — H-40, pffas — 13.5) (10). The pH of a saturated aqueous solution of pure CA at room temperature is - 4.8. Thermodynamic properties of CA are given ia Table 1. Spectroscopic data are available (1 3). Proton nmr is of limited usefulness because of proton exchange and CA s symmetry and low solubiUty. Nuclear quadmpole resonance measurements ( " N) have been reported (12). [Pg.417]

Application of NMR spectroscopy to heterocyclic chemistry has developed very rapidly during the past 15 years, and the technique is now used almost as routinely as H NMR spectroscopy. There are four main areas of application of interest to the heterocyclic chemist (i) elucidation of structure, where the method can be particularly valuable for complex natural products such as alkaloids and carbohydrate antibiotics (ii) stereochemical studies, especially conformational analysis of saturated heterocyclic systems (iii) the correlation of various theoretical aspects of structure and electronic distribution with chemical shifts, coupling constants and other NMR derived parameters and (iv) the unravelling of biosynthetic pathways to natural products, where, in contrast to related studies with " C-labelled precursors, stepwise degradation of the secondary metabolite is usually unnecessary. [Pg.11]

These cover the following topics (a) theoretical methods, with emphasis on the utility of such methods b) molecular dimensions, as determined by X-ray, electron diffraction and microwave spectra (c) molecular spectra, covering NMR, IR, UV, mass and photoelectron spectra [d) thermodynamic aspects, such as stability, ring strain, aromaticity, shape and conformation of saturated and partially saturated rings (c) tautomerism, including prototopic and ring-chain (/) betaine and other unusual structures. [Pg.4]

Relationships connecting stmcture and properties of primary alkylamines of normal stmcture C, -C gin chloroform and other solvents with their ability to extract Rh(III) and Ru(III) HCA from chloride solutions have been studied. The out-sphere mechanism of extraction and composition of extracted associates has been ascertained by UV-VIS-, IR-, and H-NMR spectroscopy, saturation method, and analysis of organic phase. Tertiary alkylamines i.e. tri-n-octylamine, tribenzylamine do not extract Ru(III) and Rh(III) HCA. The decrease of radical volume of tertiary alkylamines by changing of two alkyl radicals to methyl make it possible to diminish steric effects and to use tertiary alkylamines with different radicals such as dimethyl-n-dodecylamine which has not been used previously for the extraction of Rh(III), Ru(III) HCA with localized charge. [Pg.257]

We achieved, that by contact of polyurethane foam with water solution of molybdophosphate, contain by pH 1-2,5 mixture of saturated (5 NMR P=-3.20 p.p.m. apply to 85 % H PO ) and unsaturated monovacant (x=0-t-4) (5 NMR P = -0,96 p.p.m.) heteropolycomplexes Keggin staicture, equilibrium discharge in the direction produced of saturated heteropolycomplex of Dowson stmcture and on the surface of polyurethan foam formed 18-molybdo-2-phosphate acid ( P = -2,40 p.p.m. in ether extract). The formed surfaces heteropolycomplex is stable for action 1 M solution of strong acids and basics and have ion exchanged properties in static and dynamic conditions to relation to macro and micro amount of M(I) ... [Pg.260]

Perfluoro(methylcyclohexane) [355-02-2] M 350.1, b 76.3", d 1.7878. Refluxed for 24h with saturated acid KMn04 (to oxidise and remove hydrocarbons), then neutralised, steam distd, dried with P2O5 and passed slowly through a column of dry silica gel. [Glew and Reeves J Phys Chem 60 615 1956.] Also purified by percolation through a Im neutral activated alumina column, and H-impurities checked by NMR. [Pg.323]


See other pages where Saturation, nmr is mentioned: [Pg.243]    [Pg.260]    [Pg.297]    [Pg.118]    [Pg.56]    [Pg.243]    [Pg.260]    [Pg.297]    [Pg.118]    [Pg.56]    [Pg.1446]    [Pg.1455]    [Pg.1462]    [Pg.1462]    [Pg.1474]    [Pg.1508]    [Pg.141]    [Pg.121]    [Pg.122]    [Pg.141]    [Pg.470]    [Pg.404]    [Pg.404]    [Pg.404]    [Pg.32]    [Pg.387]    [Pg.438]    [Pg.8]    [Pg.23]    [Pg.49]    [Pg.199]    [Pg.625]    [Pg.691]    [Pg.730]    [Pg.876]    [Pg.122]    [Pg.489]    [Pg.491]   
See also in sourсe #XX -- [ Pg.229 ]




SEARCH



NMR spectroscopy saturation-transfer

Saturation transfer difference NMR

Saturation transfer difference NMR spectroscopy

© 2024 chempedia.info