Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sapphire materials

Dobrovinskaya, E.R., Lytvynov, L.A., Pishchik, V., 2009. Sapphire Material, Manufacturing, Applications. Springer, New York. [Pg.254]

Klinter, A. J., Mendoza-Suarez, G., Drew, R. A. L. (2008). Wetting of pure aluminum and selected alloys on polycrystalline alumina and sapphire. Materials Science and Engineering A, 495, 147-152. doi 10.1016/j.msea.2007.10.113. [Pg.473]

Other frequently used resonators are dielectric cavities and loop-gap resonators (also called split-ring resonators) [12]. A dielectric cavity contains a diamagnetic material that serves as a dielectric to raise the effective filling factor by concentratmg the B field over the volume of the sample. Hollow cylinders machmed from Ilised quartz or sapphire that host the sample along the cylindrical axis are conunonly used. [Pg.1560]

Figure C2.16.2 shows tire gap-lattice constant plots for tire III-V nitrides. These compounds can have eitlier tire WTirtzite or zincblende stmctures, witli tire wurtzite polytype having tire most interesting device applications. The large gaps of tliese materials make tliem particularly useful in tire preparation of LEDs and diode lasers emitting in tire blue part of tire visible spectmm. Unlike tire smaller-gap III-V compounds illustrated in figure C2.16.3 single crystals of tire nitride binaries of AIN, GaN and InN can be prepared only in very small sizes, too small for epitaxial growtli of device stmctures. Substrate materials such as sapphire and SiC are used instead. Figure C2.16.2 shows tire gap-lattice constant plots for tire III-V nitrides. These compounds can have eitlier tire WTirtzite or zincblende stmctures, witli tire wurtzite polytype having tire most interesting device applications. The large gaps of tliese materials make tliem particularly useful in tire preparation of LEDs and diode lasers emitting in tire blue part of tire visible spectmm. Unlike tire smaller-gap III-V compounds illustrated in figure C2.16.3 single crystals of tire nitride binaries of AIN, GaN and InN can be prepared only in very small sizes, too small for epitaxial growtli of device stmctures. Substrate materials such as sapphire and SiC are used instead.
Synthetic gemstone materials often have multiple uses. Synthetic mby and colodess sapphire are used for watch bearings, unscratchable watch crystals, and bar-code reader windows. Synthetic quartz oscillators are used for precision time-keeping, citizen s band radio (CB) crystals, and filters. Synthetic mby, emerald, and garnets are used for masers and lasers (qv). [Pg.213]

Several gemstone species occur in various colors, depending on the presence of impurities or irradiation-induced color centers. Examples are the beryl, comndum, and quart2 families. Quart2 has poor optical properties (RI = 1.55, DISP = 0.013), but becomes of gemological interest when it exhibits attractive colors. Any material can have its color modified by the addition of various impurities synthetic mby, sapphires, and spinel are produced commercially in over 100 colors (2). Synthetic cubic 2irconia has been made in essentially all colors of the spectmm (11), but only the colorless diamond imitation is produced commercially in any quantity. [Pg.214]

Some treatments are practiced so widely that untreated material is essentially unknown ia the jewelry trade. The heating of pale Fe-containing chalcedony to produce red-brown carnelian is one of these. Another example iavolves turquoise where the treated material is far superior ia color stabiUty. Such treatments have traditionally not been disclosed. Almost all blue sapphire on the market has been heat treated, but it is not possible to distinguish whether it was near-colorless comndum containing Fe and Ti before treatment, or whether it had already been blue and was only treated ia an attempt at marginal improvement. The irradiation of colorless topa2 to produce a blue color more iatense than any occurring naturally is, however, self-evident, and treatments used on diamond are always disclosed. [Pg.220]

Hard Materials (7) Quartz, granite (8) topaz (9) corundum, sapphire, emeiy (10) diamond. [Pg.1829]

An additional advantage to neutron reflectivity is that high-vacuum conditions are not required. Thus, while studies on solid films can easily be pursued by several techniques, studies involving solvents or other volatile fluids are amenable only to reflectivity techniques. Neutrons penetrate deeply into a medium without substantial losses due to absorption. For example, a hydrocarbon film with a density of Ig cm havii a thickness of 2 mm attenuates the neutron beam by only 50%. Consequently, films several pm in thickness can be studied by neutron reflecdvity. Thus, one has the ability to probe concentration gradients at interfaces that are buried deep within a specimen while maintaining the high spatial resolution. Materials like quartz, sapphire, or aluminum are transparent to neutrons. Thus, concentration profiles at solid interfaces can be studied with neutrons, which simply is not possible with other techniques. [Pg.661]

Fig. 5.5. The electrical response of piezoelectric polymers under shock loading is studied experimentally by placing the thin PVDF element on the impact surface of a standard target, either the polymer, Kel F, z-cut quartz, or z-cut sapphire. The im-pactor is typically of the same material. The current pulse is recorded on transient digitizers with frequency responses from 250 to 1000 MHz. Fig. 5.5. The electrical response of piezoelectric polymers under shock loading is studied experimentally by placing the thin PVDF element on the impact surface of a standard target, either the polymer, Kel F, z-cut quartz, or z-cut sapphire. The im-pactor is typically of the same material. The current pulse is recorded on transient digitizers with frequency responses from 250 to 1000 MHz.
The two extremes of ordering in solids are perfect crystals with complete regularity and amorphous solids that have little symmetry. Most solid materials are crystalline but contain defects. Crystalline defects can profoundly alter the properties of a solid material, often in ways that have usefial applications. Doped semiconductors, described in Section 10-, are solids into which impurity defects are introduced deliberately in order to modify electrical conductivity. Gemstones are crystals containing impurities that give them their color. Sapphires and rubies are imperfect crystals of colorless AI2 O3, red. [Pg.801]

In summary, the NLE technique offers a concepmally new approach to observe NFS. Existing limits for time resolution could be overcome by a microfocused synchrotron beam (as planned for PETRA III) and by detectors with high spatial resolution and background from SAXS could be suppressed by employing high-energy transitions and crystalline sapphire as rotor material. [Pg.512]


See other pages where Sapphire materials is mentioned: [Pg.19]    [Pg.62]    [Pg.19]    [Pg.62]    [Pg.26]    [Pg.188]    [Pg.352]    [Pg.1248]    [Pg.1249]    [Pg.217]    [Pg.217]    [Pg.218]    [Pg.222]    [Pg.222]    [Pg.223]    [Pg.192]    [Pg.8]    [Pg.12]    [Pg.121]    [Pg.7]    [Pg.434]    [Pg.313]    [Pg.495]    [Pg.59]    [Pg.65]    [Pg.183]    [Pg.21]    [Pg.22]    [Pg.23]    [Pg.33]    [Pg.107]    [Pg.128]    [Pg.155]    [Pg.155]    [Pg.146]    [Pg.4]    [Pg.178]    [Pg.512]    [Pg.3]   


SEARCH



Sapphire

Sapphire materials diamond anvil cells

© 2024 chempedia.info