Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Saddle points dynamic methods

At first sight, the easiest approach is to fit a set of points near the saddle point to some analytical expression. Derivatives of the fitted function can then be used to locate the saddle point. This method has been well used for small molecules (see Sana, 1981). An accurate fit to a large portion of the potential energy surface is also needed for the study of reaction dynamics by classical or semi-classical trajectory methods. [Pg.249]

A more balanced description requires MCSCF based methods where the orbitals are optimized for each particular state, or optimized for a suitable average of the desired states (state averaged MCSCF). It should be noted that such excited state MCSCF solutions correspond to saddle points in the parameter space for the wave function, and second-order optimization techniques are therefore almost mandatory. In order to obtain accurate excitation energies it is normally necessarily to also include dynamical Correlation, for example by using the CASPT2 method. [Pg.147]

The saddle-point equation leads to the momentum dependent dynamical quark mass Mf(k) = MfF2(k). Mf here is a function of current mass mf (M.M. Musakhanov, 2002). It was found that that M[m] is a decreasing function and for the strange quark with ms = 0.15 GeV Ms 0.5 Mu>d. This result in a good correspondence with (P. Pobylitsa, 1989), where another method was completely applied - direct sum is of planar diagrams. [Pg.266]

More recently, the problem of self-oscillation and chaotic behavior of a CSTR with a control system has been considered in others papers and books [2], [3], [8], [9], [13], [14], [20], [21], [27]. In the previously cited papers, the control strategy varies from simple PID to robust asymptotic stabilization. In these papers, the transition from self-oscillating to chaotic behavior is investigated, showing that there are different routes to chaos from period doubling to the existence of a Shilnikov homoclinic orbit [25], [26]. It is interesting to remark that in an uncontrolled CSTR with a simple irreversible reaction A B it does not appear any homoclinic orbit with a saddle point. Consequently, Melnikov method cannot be applied to corroborate the existence of chaotic dynamic [34]. [Pg.244]

Chain-of-states methods have also been used for finding classical dynamical paths.4 A2 Gillilan and Wilson" suggested using an object function similar to equation 1 for finding saddle points, but this suffers from the comer-cutting and down-sliding problems discussed above. [Pg.278]

Figure 7 Application of the dimer method to a two-dimensional test problem. Three different starting points are generated in the reactant region by taking extrema along a high temperature dynamical trajectory. From each one of these, the dimer isjirst translated only in the direction of the lowest mode, but once the dimer is out of the convex region a full optimization of the effective force is carried oat at each step (thus the kink in two of the paths). Each one of the three starting p>oints leads to a different saddle point in this case. Figure 7 Application of the dimer method to a two-dimensional test problem. Three different starting points are generated in the reactant region by taking extrema along a high temperature dynamical trajectory. From each one of these, the dimer isjirst translated only in the direction of the lowest mode, but once the dimer is out of the convex region a full optimization of the effective force is carried oat at each step (thus the kink in two of the paths). Each one of the three starting p>oints leads to a different saddle point in this case.
One example of non-IRC trajectory was reported for the photoisomerization of cA-stilbene.36,37 In this study trajectory calculations were started at stilbene in its first excited state. The initial stilbene structure was obtained at CIS/6-31G, and 2744 argon atoms were used as a model solvent with periodic boundary conditions. In order to save computational time, finite element interpolation method was used, in which all degrees of freedom were frozen except the central ethylenic torsional angle and the two adjacent phenyl torsional angles. The solvent was equilibrated around a fully rigid m-stilbene for 20 ps, and initial configurations were taken every 1 ps intervals from subsequent equilibration. The results of 800 trajectories revealed that, because of the excessive internal potential energy, the trajectories did not cross the barrier at the saddle point. Thus, the prerequisites for common concepts of reaction dynamics such TST or RRKM theory were not satisfied. [Pg.191]

The most common assumption is one of a reaction path in hyperspace (Miller et al. 1980). A saddle point on the PES is found and the steepest descent path (in mass-weighted coordinates) from this saddle point to reactants and products is defined as the reaction path. The information needed, except for the path and the energies along it, is the local quadratic PES for motion perpendicular to the path. The reaction-path Hamiltonian is only a weakly local method since it can be viewed as an approximation to the full PES and since it is possible to use any of the previously defined global-dynamical methods with this potential. However, it is local because the approximate PES restricts motion to lie around the reaction path. The utility of a reaction-path formalism involves convenient approximations to the dynamics which can be made with the formalism as a starting point. [Pg.211]

In all cases, TST provides a relatively simple method for the prediction of the rate constant. However, one must always keep in mind the assumption of TST, especially the short-time and positive momentum criteria, which prohibit recrossing of the saddle point. The fundamental idea that the dynamical process follows a reaction path must also be critically examined. [Pg.212]

Turning next to dynamics on the PES and calculations of reaction rates, one might expect that these rates for the majority of cases will be determined with the help of Eyring s transition state method. To this end, locating saddle points on the PES is still time consuming in terms of manpower, and more systematic and automated procedures would be welcome. [Pg.34]

Energy derivatives are essential for the computation of dynamics properties. There are several dynamics-related methods available in gamess. The intrinsic reaction coordinate (IRC) or minimum energy path (MEP) follows the infinitely damped path from a first-order saddle point (transition state) to the minima connected to that transition state. In addition to providing an analysis of the process by which a chemical reaction occurs (e.g. evolution of geometric structure and wavefunction), the IRC is a common starting point for the study of dynamics. Example are variational transition state theory (VTST [55]) and the modified Shepard interpolation method developed by Collins and co-workers... [Pg.1176]


See other pages where Saddle points dynamic methods is mentioned: [Pg.87]    [Pg.303]    [Pg.387]    [Pg.133]    [Pg.344]    [Pg.261]    [Pg.342]    [Pg.463]    [Pg.305]    [Pg.86]    [Pg.144]    [Pg.272]    [Pg.278]    [Pg.487]    [Pg.27]    [Pg.283]    [Pg.323]    [Pg.4536]    [Pg.175]    [Pg.81]    [Pg.532]    [Pg.619]    [Pg.640]    [Pg.71]    [Pg.830]    [Pg.380]    [Pg.147]    [Pg.344]    [Pg.203]    [Pg.330]    [Pg.161]    [Pg.136]    [Pg.152]    [Pg.849]    [Pg.896]    [Pg.323]    [Pg.57]   


SEARCH



Dynamic method

Point method

Saddle points

Saddle-point method

Saddles

© 2024 chempedia.info