Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

S-trans

A more eflicient and general synthetic procedure is the Masamune reaction of aldehydes with boron enolates of chiral a-silyloxy ketones. A double asymmetric induction generates two new chiral centres with enantioselectivities > 99%. It is again explained by a chair-like six-centre transition state. The repulsive interactions of the bulky cyclohexyl group with the vinylic hydrogen and the boron ligands dictate the approach of the enolate to the aldehyde (S. Masamune, 1981 A). The fi-hydroxy-x-methyl ketones obtained are pure threo products (threo = threose- or threonine-like Fischer formula also termed syn" = planar zig-zag chain with substituents on one side), and the reaction has successfully been applied to macrolide syntheses (S. Masamune, 1981 B). Optically pure threo (= syn") 8-hydroxy-a-methyl carboxylic acids are obtained by desilylation and periodate oxidation (S. Masamune, 1981 A). Chiral 0-((S)-trans-2,5-dimethyl-l-borolanyl) ketene thioketals giving pure erythro (= anti ) diastereomers have also been developed by S. Masamune (1986). [Pg.62]

Additional evidence for electron delocalization m 1 3 butadiene can be obtained by considering its conformations Overlap of the two rr electron systems is optimal when the four carbon atoms are coplanar Two conformations allow this coplananty they are called the s cis and s trans conformations... [Pg.401]

The letter sms cis and s trans refers to conformations around the C—C single bond m the diene The s trans conformation of 1 3 butadiene is 12 kJ/mol (2 8 kcal/mol) more stable than the s cis which is destabilized by van der Waals strain between the hydrogens at C 1 and C 4... [Pg.401]

Examine the models of 1 3 butadiene in Figure 10 6 on Learn mg By Modeling and com pare space filling models of the s CIS and s trans confor mation... [Pg.401]

FIGURE 10 6 Confor mations and electron delo calization in 1 3 butadiene The s CIS and the s trans con formations permit the 2p or bitalsto be aligned parallel to one another for maxi mum TT electron delocaliza tion The s trans conformation is more stable than the s CIS Stabilization resulting from tt electron de localization is least in the perpendicular conformation which IS a transition state for rotation about the C 2—C 3 single bond The green and yellow colors are meant to differentiate the orbitals and do not indicate their phases... [Pg.402]

The two most stable conformations of conjugated dienes are the s cis and s trans The s trans conformation is normally more stable than the s cis Both conformations are planar which allows the p orbitals to overlap to give an extended tt system... [Pg.417]

If a molecule has a centre of inversion (or centre of symmetry), i, reflection of each nucleus through the centre of the molecule to an equal distance on the opposite side of the centre produces a configuration indistinguishable from the initial one. Figure 4.4 shows s-trans-buta-1,3-diene (the x refers to trans about a nominally single bond) and sulphur hexafluoride, both of which have inversion centres. [Pg.76]

Examples of prolate near-symmetric rotors are the s-trans and s-cis isomers of crotonic acid, shown in Figure 5.8, the a axis straddling a chain of the heavier atoms in both species. The rotational term values for both isomers are given approximately by Equation (5.37) but, because A and B are different for each of them, their rotational transitions are not quite coincident. Figure 5.9 shows a part of a low-resolution microwave spectmm of crotonic acid in which the weaker series of lines is due to the less abundant s-cis isomer and the stronger series is due to the more abundant s-trans isomer. [Pg.117]

Bufa-1,3-diene is one of many examples of molecules in which torsional motion may convert a sfable isomer info anofher, less sfable, isomer. The more sfable isomer in fhis case is fhe s-trans form, shown in Figure 6.44(e), and fhe less sfable one is fhe s-cis form, ... [Pg.192]

Conformation. The exact conformation of the isoprene molecule is stiU in doubt. It is generally accepted that rotation is restricted around the central C—C single bond. Isoprene may be considered as an equiHbrium of two conformations, namely a cisoid s-cis) conformation in which both vinyl groups are located on the same side of the C—C bond, and a transoid s-trans) one with the vinyl groups located on the opposite sides of the bond. The predominance of the trans-planar or nonplanar configuration has been supported by experimental data (10—14). [Pg.462]

Limiting Nusselt numbers for laminar flow in annuli have been calculated by Dwyer [Nucl. Set. Eng., 17, 336 (1963)]. In addition, theoretical analyses of laminar-flow heat transfer in concentric and eccentric annuh have been published by Reynolds, Lundberg, and McCuen [Jnt. J. Heat Ma.s.s Tran.sfer, 6, 483, 495 (1963)]. Lee fnt. J. Heat Ma.s.s Tran.sfer, 11,509 (1968)] presented an analysis of turbulent heat transfer in entrance regions of concentric annuh. Fully developed local Nusselt numbers were generally attained within a region of 30 equivalent diameters for 0.1 < Np < 30, lO < < 2 X 10, 1.01 <... [Pg.561]

Condensation of pure vapors under laminar conditions in the presence of noncondensable gases, interfacial resistance, superheating, variable properties, and diffusion has been analyzed by Minkowycz and Sparrow [Int. ]. Heat Ma.s.s Tran.sfer, 9, 1125 (1966)]. [Pg.568]

For gas-phase diffusion in small pores at lowpressure, the molecular mean free path may be larger than the pore diameter, giving rise to Knudsen diffusion. Satterfield (Ma.s.s Tran.sfer in Heterogeneous Catalysis, MIT, Cambridge, MA, 1970, p. 43), gives the following expression for the pore dimisivity ... [Pg.1511]

Ga.s-Lic(uid Ma.s.s Tran.sfer Gas-liqiiid mass transfer norrnallv is correlated bv means of the mass-transfer coefficient K a ersiis powder le el at arioiis superficial gas elocities. The superficial gas clocitv is the ohirne of gas at the a erage temperature and pressure at the midpoint in the tank di ided bv the area of the essel. In order to obtain the partial-pressure dri ing force, an assumption must be made of the partial pressure in equilibrium wdth the concentration of gas in the liquid, Manv times this must be assumed, but if Fig, 18-26 is obtained in the pilot plant and the same assumption principle is used in e ahiating the mixer in the full-scale tank, the error from the assumption is limited. [Pg.1635]

FIG. 18-26 IXpk al curve for ma.s.s tran.sfer coefficient K.,a as i mixer power and superficial gas velocity. [Pg.1635]

FIG. 29-85 Tvpic al oil cooler, where the heat i.s tran.sferred to water. [Pg.2540]

Dienes would be expected to adopt conformations in which the double bonds are coplanar, so as to permit effective orbital overlap and electron delocalization. The two alternative planar eonformations for 1,3-butadiene are referred to as s-trans and s-cis. In addition to the two planar conformations, there is a third conformation, referred to as the skew conformation, which is cisoid but not planar. Various types of studies have shown that the s-trans conformation is the most stable one for 1,3-butadiene. A small amount of one of the skew conformations is also present in equilibrium with the major conformer. The planar s-cis conformation incorporates a van der Waals repulsion between the hydrogens on C—1 and C—4. This is relieved in the skew conformation. [Pg.134]

The barrier for conversion of the skew conformation to the s-trans conformation is 3.9kcal/mol. This energy maximum presiunably refers to the conformation (transition state) in which the two n bonds are mutually perpendicular. Various MO calculations find the s-trans conformation to be 2-5 kcal/mol lower in energy than either the planar or skew cisoid conformations. Most high-level calculations favor the skew conformation over the planar s-cis, but the energy differences found are quite small. ... [Pg.134]

The case of a, -unsaturated caAonyl compounds is analogous to that of 1,3-dienes, in that stereoelectronic factors favor coplanaiity of the C=C—C=0 system. The rotamers that are important are the s-trans and s-cis conformations. Microwave data indicate that the s-trans form is the only conformation present in detectable amounts in acrolein (2-propenal). The equilibrium distribution of s-trans and s-cis conformations of a,fi-unsatuiated ketones depends on the extent of van der Waals interaction between substituents. Methyl vinyl ketone has minimal unfavorable van der Waals repulsions between substituents and exists predominantly as the s-trans conformer ... [Pg.134]

An unfavorable methyl-methyl interaction destabilizes the s-trans conformation of 4-methyl-3-penten-2-one relative to the s-cis conformation, and the equilibrium favors the s-cis form. [Pg.135]


See other pages where S-trans is mentioned: [Pg.612]    [Pg.369]    [Pg.158]    [Pg.142]    [Pg.265]    [Pg.401]    [Pg.401]    [Pg.402]    [Pg.417]    [Pg.421]    [Pg.421]    [Pg.745]    [Pg.105]    [Pg.117]    [Pg.117]    [Pg.194]    [Pg.195]    [Pg.195]    [Pg.437]    [Pg.207]    [Pg.212]    [Pg.341]    [Pg.707]    [Pg.1350]    [Pg.1360]    [Pg.123]    [Pg.134]    [Pg.135]    [Pg.135]   
See also in sourсe #XX -- [ Pg.63 , Pg.64 ]

See also in sourсe #XX -- [ Pg.89 , Pg.114 , Pg.169 ]

See also in sourсe #XX -- [ Pg.35 ]

See also in sourсe #XX -- [ Pg.110 ]

See also in sourсe #XX -- [ Pg.343 ]

See also in sourсe #XX -- [ Pg.589 , Pg.590 ]

See also in sourсe #XX -- [ Pg.201 ]

See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Ci s-trans-Isomerization

Inter... s. a. Trans

Replacement (s. a. Substitution Trans

S-Trans conformation

S-trans configuration

S-trans conformers

S-trans diene

S-trans rotamers

Trans . . . s. a. Interchange

Trans- s. Geospecificity

Trans- s. Isomers

Trans- s. Isomers Rearrangement

© 2024 chempedia.info