Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium Indenylidene Catalysts for Alkene Metathesis

The indenylidene-ruthenium complexes were shown to be the actual alkene metathesis catalysts arising from the addition of propargylic alcohols [15-18]. The Dixneuf group [19, 20] later revealed that the intramolecular rearrangement of allenylidene-ruthenium complexes into indenylidene-ruthenium complexes was [Pg.389]

Handbook of Metathesis Vol 1 Catalyst Development and Mechanism, Second Edition. [Pg.389]

The Initial Development of Indenylidene Metal Complexes for Alkene Metathesis [Pg.390]


Two observations initiated a strong motivation for the preparation of indenylidene-ruthenium complexes via activation of propargyl alcohols and the synthesis of allenylidene-ruthenium intermediates. The first results from the synthesis of the first indenylidene complexes VIII and IX without observation of the expected allenylidene intermediate [42-44] (Schemes 8.7 and 8.8), and the initial evidence that the well-defined complex IX was an efficient catalyst for alkene metathesis reactions [43-44]. The second observation concerned the direct evidence that the well-defined stable allenylidene ruthenium(arene) complex Ib rearranged intramo-lecularly into the indenylidene-ruthenium complex XV via an acid-promoted process [22, 23] (Scheme 8.11) and that the in situ prepared [33] or isolated [34] derivatives XV behaved as efficient catalysts for ROMP and RCM reactions. [Pg.265]

In 1998 it was revealed that allenylidene-ruthenium complexes, arising simply from propargylic alcohols, were efficient precursors for alkene metathesis [12], This discovery first initiated a renaissance in allenylidene metal complexes as possible alkene metathesis precursors, then it was observed and demonstrated that allenylidene-ruthenium complexes rearranged into indenylidene-ruthenium intermediates that are actually the real catalyst precursors. The synthesis of indenylidene-metal complexes and their efficient use in alkene metathesis are now under development. The interest in finding a convenient source of easy to make alkene metathesis initiators is currently leading to investigation of other routes to initiators from propargylic derivatives. [Pg.252]

The control of alkene geometry in RCM reactions has been an area of intense research and interest since the process was first developed. While a general solution to this challenge has not yet been developed, intriguing observations of E Z control in macrocyclizations continue to be reported. For example, in the course of their studies on the synthesis of herbarumin I and II, Fiirstner and co-workers reported the selective formation of either of the two isomeric alkene products 16 or 17 via RCM of diene 15 <02JA7061> (Scheme 8). The diene 15 was transformed into the -alkene 17 using the ruthenium indenylidene catalyst (Fiirstner Metathesis Catalyst FMC, <01MI4811>) while use of the MC2 led to clean formation of the Z-isomer 16. [Pg.4]


See other pages where Ruthenium Indenylidene Catalysts for Alkene Metathesis is mentioned: [Pg.389]    [Pg.390]    [Pg.392]    [Pg.394]    [Pg.396]    [Pg.398]    [Pg.400]    [Pg.402]    [Pg.404]    [Pg.406]    [Pg.408]    [Pg.410]    [Pg.414]    [Pg.416]    [Pg.389]    [Pg.390]    [Pg.392]    [Pg.394]    [Pg.396]    [Pg.398]    [Pg.400]    [Pg.402]    [Pg.404]    [Pg.406]    [Pg.408]    [Pg.410]    [Pg.414]    [Pg.416]    [Pg.274]    [Pg.5]    [Pg.27]    [Pg.389]   


SEARCH



Alkene metathesis

Alkene metathesis catalyst

Alkene metathesis ruthenium indenylidene catalysts

Alkene ruthenium indenylidene catalysts 389,

Alkenes catalysts for

Catalysts alkenes

Catalysts for alkene metathesis

Indenylidene

Indenylidene catalysts

Indenylidene ruthenium catalysts

Indenylidene-ruthenium

Metathesis catalysts

Ruthenium alkenes

Ruthenium catalysts alkene metathesis

Ruthenium catalysts for metathesis

Ruthenium metathesis

Ruthenium metathesis catalyst

© 2024 chempedia.info