Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium catalysts porphyrin polymers

Other examples involve the immobilization of ruthenium porphyrin catalysts [74]. While Severin et al. generated insoluble polymer-embedded catalysts 16 by co-polymerizing porphyrin derivatives with ethylene glycol dimethacrylate (EGD-MA) [74 a], Che et al. linked the ruthenium-porphyrin unit to soluble polyethylene glycol (PEG) 17 [74b]. Both immobilized catalysts were employed in a variety of olefin epoxidations with 2,6-dichloropyridine N-oxide (Gl2pyNO), providing similar conversions of up to 99% and high selectivities (Scheme 4.9). [Pg.213]

A ruthenium porphyrin complex immobilized in a polymer can be used for catalytic epoxidation with 2,6-dichloropyridine N-oxide [112], Nitrous oxide (N2O) can be also used as oxidant for the epoxidation of trisubstituted olefins in the presence of ruthenium porphyrin catalyst [113], Asymmetric epoxidations have been reported using chiral ruthenium porphyrin complexes 35 [114], 36 [115], and 37 [116] (Eq. 3.62). [Pg.73]

Apart from the commonly used NaOCl, urea—H2O2 has been used/ With this reaction, simple alkenes can be epoxi-dized with high enantioselectivity. The mechanism of this reaction has been examined.Radical intermediates have been suggested for this reaction, polymer-bound Mn -salen complex, in conjunction with NaOCl, has been used for asymmetric epoxidation. Chromium-salen complexes and ruthenium-salen complexes have been used for epoxidation. Manganese porphyrin complexes have also been used. Cobalt complexes give similar results. A related epoxidation reaction used an iron complex with molecular oxygen and isopropanal. Nonracemic epoxides can be prepared from racemic epoxides with salen-cobalt(II) catalysts following a modified procedure for kinetic resolution. [Pg.1178]

With respect to the widely investigated metalloporphyrins for catalytic epoxidation, progress was made in the area of polymer-supported ruthenium porphyrins for asymmetric epoxidation. Manganese-porphyrin complexes attached via peptide linkers to organic polymers showed enhanced selectivity and catalyst stability due to donor atoms in the linker that could coordinate to the metal center. This shows that improvement can be achieved not only by optimization of the polymer or metal complex but also by appropriate choice of the linker. Furthermore, electropolymerization by anodic oxidation of suitable manganese-porphyrin complexes proved to be a promising technique for the preparation of efficient immobilized epoxidation catalysts. [Pg.403]

J. L. Zhang, C. M. Che, Soluble polymer-supported ruthenium porphyrin catalysts for epoxidation, cyclopropanation, and aziridination of alkenes, Org. Lett. 4 (2002) 1911. [Pg.410]

O. Nestler, K. Severin, A ruthenium porphyrin catalyst immobilized in a highly cross-linked polymer, Org. Lett. 3 (2001) 3907. [Pg.410]

Another type of polymer-supported chiral catalyst for asymmetric cyclopropanation was obtained by electropolymerization of the tetraspirobifluorenylporphyrin ruthenium complex [143]. The cyclopropanation of styrene with diazoacetate, catalyzed by the polymeric catalyst 227, proceeded efficiently at room temperature with good yields (80-90%) and moderate enantioselectivities (up to 53% at -40 °C) (Scheme 3.75). PS-supported versions of the chiral ruthenium-porphyrin complexes 231 (Scheme 3.76) were also prepared and used for the same reaction [144]. The cyclopropanation of styrene by ethyl diazoacetate proceeded well in the presence of the polymeric catalyst to give the product in good yields (60-88%) with high stereoselectivities (71-90% ee). The highest ee-value (90%) was obtained for the cyclopropanation of p-bromostyrene. [Pg.118]

Electrochemical polymerization offers particular advantages in that polymerized porphyrins can form electroactive, adherent and stable films on solid electrodes. Oxidative electropolymerization of several porphyrins and metalloporphyrins have been reported . Special focus has been placed on amino-substituted porphyrins due to the propensity of aniline to form electroactive polymers. Murray et al. reported on the electropolymerization of tetrakis(o-aminophenyl)porphyrin and several para-, ortho-, and meta-substituted tetrakis(aminophenyl)porphyrins with Co as a central metal s. They found that poly-Co(o-NH2)TPP films are effective catalysts for the electroreduction of oxygen in aqueous solution. Metalloporphyrin films on solid electrodes have been mainly characterized by voltammetry and resonsance Raman spectroscopy. The electrochemistry of ruthenium paradiethylamino substituted tetraphenylporphyrins recently have been investigated . This study reports the ac impedance and UV-visible reflectance spectroscopic studies of paradiethylamino substituted tetra-phenylporphyrin films formed via an oxidative electropolymerization process. [Pg.87]


See other pages where Ruthenium catalysts porphyrin polymers is mentioned: [Pg.398]    [Pg.398]    [Pg.399]    [Pg.678]    [Pg.134]    [Pg.410]    [Pg.230]    [Pg.392]    [Pg.478]    [Pg.286]    [Pg.633]    [Pg.3114]    [Pg.218]    [Pg.351]    [Pg.57]    [Pg.367]   
See also in sourсe #XX -- [ Pg.230 , Pg.231 ]




SEARCH



Polymer catalysts

Porphyrin polymers

Ruthenium polymer

Ruthenium porphyrin catalysts

Ruthenium porphyrins

© 2024 chempedia.info