Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium polymer-supported

The choice of the metals is strictly related to the catalytic application. As we shall show later, the catal54ic reaction most commonly investigated with polymer supported M / CFP catalysts is hydrogenation (Table 3). The overwhelming majority of catalytic studies concerns the hydrogenation of alkenes and by far the most commonly employed metal is palladium, followed by platinum. Examples of rhodium and ruthenium hydrogenation catalysts supported on pol5uneric supports are very rare. [Pg.212]

This aldol condensation is assumed to proceed via nucleophilic addition of a ruthenium enolate intermediate to the corresponding carbonyl compound, followed by protonation of the resultant alkoxide with the G-H acidic starting nitrile, hence regenerating the catalyst and releasing the aldol adduct, which can easily dehydrate to afford the desired a,/3-unsaturated nitriles 157 in almost quantitative yields. Another example of this reaction type was reported by Lin and co-workers,352 whereas an application to solid-phase synthesis with polymer-supported nitriles has been published only recently.353... [Pg.441]

The polymers derived from ruthenium(II)-polypyridine complexes have demonstrated promising potential for application in solar energy conversion, sensors, polymer-supported electrodes, nonlinear optics, photorefraction, and electroluminescence [27-32]. [Pg.56]

In a first series of trials, trimethylsUyl cyanide (TMSCN) was used as the cyanide source and polymer-supported (ethylenediaminetetraacetic acid) ruthenium(lll) chloride as the Lewis acid catalyst (Scheme 23). After the optimisation of the conditions on a model reaction, a small library of compounds was produced, proving the concept by obtaining 100% yields in 2.5 h reaction time. Using flow rates of... [Pg.178]

In a dilferent study, the 1-4-p glucose dimer cellubiose was used as a model substrate for cellulose. Using a polymer supported ruthenium... [Pg.38]

Solid-phase synthesis is of importance in combinatorial chemistry. As already mentioned RuH2(PPh3)4 catalyst can be used as an alternative to the conventional Lewis acid or base catalyst. When one uses polymer-supported cyanoacetate 37, which can be readily obtained from the commercially available polystyrene Wang resin and cyanoacetic acid, the ruthenium-catalyzed Knoevenagel and Michael reactions can be performed successively [27]. The effectiveness of this reaction is demonstrated by the sequential four-component reaction on solid phase as shown in Scheme 11 [27]. The ruthenium-catalyzed condensation of 37 with propanal and subsequent addition of diethyl malonate and methyl vinyl ketone in TH F at 50 °C gave the adduct 40 diastereoselectively in 40 % yield (de= 90 10). [Pg.326]

Scheme 11. Ruthenium-catalyzed four-component reaction and gluralimide synthesis by means of a polymer-supported iridium catalyst. Scheme 11. Ruthenium-catalyzed four-component reaction and gluralimide synthesis by means of a polymer-supported iridium catalyst.
The seven-step flow synthesis of ( )-oxomaritidine included the oxidation of benzylic alcohol 25 to aldehyde 26 (Scheme 4.67) using polymer-supported tetra-N-propylammonium perruthenate (TPAP) 27. Although this reaction is stoichiometric in ruthenium, the Ru(VII) species can be readily regenerated by flowing a solution of NMO through the spent reagent cartridge [89]. [Pg.100]

Interestingly, the reaction of active methylene compounds having a nitrile group with a,/l-unsaturated carbonyl compounds give Michael adducts without contamination by the corresponding aldol products (Eq. 61) [89-92]. Murahashi and coworkers [89-91] proposed that the addition of the C-H bond to a low-valent ruthenium constitutes the initial step. Recently, Takaya and Murahashi [94] applied their aldol and Michael addition reactions to solid-phase synthesis using polymer-supported nitriles. [Pg.73]

CM has been reported to provide a synthetic tool for immobilization of reagents. Polymer-supported synthesis with an allylsilyl unit as a linker was developed. Divinylbenzene cross-linked allyldimethylsilylpolystyrene has been reported to undergo highly efficient ruthenium-catalyzed CM with functionalized terminal alkenes (Eq. 45) [78]. Products have been liberated by proto-desilylation with trifluoroacetic acid. [Pg.218]

Polymer-supported synthesis of 1,3-dienes by efficient ruthenium-catalyzed in-termolecular enyne metathesis has been reported by Schiirer and Blechert [99]. The polystyrene resin, containing a propargyl ester moiety, was reacted with functionalized alkene in the presence of Cl2(PCy3)2Ru(=CHPh). The dienes obtained were cleaved from the polymer support using a paladium-catalyzed reaction with different nucleophiles (Eq. 57). [Pg.222]

Ruvn—>RuIV) the fact that it selectively oxidizes cyclobutanol to cyclobutanone and ferf-Bu(Ph)CHOH to the corresponding ketone, militates against free-radical intermediates and is consistent with a heterolytic, two-electron oxidation [103, 104]. Presumably, the key step involved /1-hydride elimination from a high-valent, for example, alkoxyruthenium(VII), intermediate followed by reoxidation of the lower-valent ruthenium by dioxygen. However, as shown in Fig. 18, if this involved the Ru(VII)/Ru( V) couple the reoxidation would require the close proximity of two ruthenium centres, which would seem unlikely in a polymer-supported catalyst. A plausible alternative, which can occur at an isolated ruthenium centre, involves the oxidation of a second molecule of alcohol, resulting in the reduction of ruthenium(V) to ruthenium(III), followed by reoxidation of the latter to ruthenium(VII) by dioxygen (Fig. 18). [Pg.305]

In the first part of this article, focusing attention on polymer-supported cobalt phosphine complex 1 and arene ruthenium complex 2, we review contributions from our laboratory that show how organometallics can be efficiently attached to derivitised polystyrene and we outline their synthetic versatility.2,3 Following this, we discuss the preparation of a supported ruthenium complex, 3, and its use in oxidation and transfer hydrogenation catalysis. [Pg.182]

Arene ruthenium complexes are used frequently in metal-mediated organic synthesis for a wide range of reactions.5 For the purposes of our studies we have focused attention mainly on enol formate synthesis as a representative reaction for comparing the activity of 2 with its non-supported analogue 5. As with the supported cobalt complex, we find that attachment of 5 to a polymer support has little effect in its catalytic activity with a range of enol formates being prepared in high yield. [Pg.184]

The triethoxysilane endgroup had to be introduced as the respective isocyanate and was then used to attach the polymer on the silicon support. In a final step, the NHC are formed and the ruthenium precursor loaded onto the polymer. Only 13% of the imidazolium sites are attached to ruthenium. The formation of this polymer supported Grubbs catalyst is doubtless a synthetic masterpiece, however, immobilisation of the Grubbs catalyst was achieved in a far less complicated manner only a few years later by a far simpler method by Fiirstner and coworkers [244]. [Pg.258]

When rare-earth-metal ions such as Eu and Tb are bound to polyelectrolyte membranes such as poly(sodium acrylate) and poly(sodium ethene-sulphonate) their fluorescence intensities are considerably enhanced this is associated with the formation of asymmetric bonds between the rare-earth ions and the acrylate/S03 groups in the polymers. This was confirmed by the addition of EDTA to the Tb -poly(sodium acrylate) complex which, because of its preferential binding to the polymer, displaced Tb ions and resulted in reduced fluorescence of the latter. Stokes shifts of fluorescent dyes in different polymer systems have been related more to mobility effects in the polymer than polarity,and the fluorescence of hydrolysed aspirin has been found to be affected by the nature of different polymer supports.The luminescence properties of cis-(2,2 -bipyridyl)ruthenium(ii) complexes have been found to be influenced by binding the complex to a polymer matrix,as have the luminescence properties of flavones and l-octadecyl-3,3-dimethyl-6 -nitrospiro(indoline-2,2 -2H-benzopyran). Other studies of interest in-... [Pg.501]

Finally, the last few years have seen the first examples of the use of molecular-imprinted, polymer-supported catalysts for achieving product selectivity. The imprinted cavities are tailored in such a way that the course of a chemical reaction is directed towards one of the possible products. In the previous section it has already been shown that molecularly imprinted polymers used as microreactors are able to impart to a given reaction a different regio- and stereo-selectivity with respect to the same reaction in solution. Attempts towards an imprinted enantio-selective catalyst were reported by Gamez and co-workers who employed as template monomer an optically active, polymerisable ruthenium complex bearing in its coordination sphere an enantiomerically pure alkoxide [121]. After polymerisation, the alkoxide was split off and the resulting polymer-supported catalyst was used for enantio-selective hydride transfer reductions. The obtained selectivity was higher than for a polymer prepared without the optically active alkoxide but lower than for the same ruthenium complex in solution. [Pg.106]

Polymer-supported benzenesulfonyl azides have been developed as a safe diazotransfer reagent. ° These compounds, including CH2N2 and other diazoalkanes, react with metals or metal salts (copper, paUadium, and rhodium are most commonly used) to give the carbene complexes that add CRR to double bonds. Diazoketones and diazoesters with alkenes to give the cyclopropane derivative, usually with a transition-metal catalyst, such as a copper complex. The ruthenium catalyst reaction of diazoesters with an alkyne give a cyclopropene. An X-ray structure of an osmium catalyst intermediate has been determined. Electron-rich alkenes react faster than simple alkenes. ... [Pg.1237]

There are various potential applications of photophysical phenomena in analytical chemistry. The relatively short lifetimes of most excited states, however, is a serious drawback to the construction of practical devices but studies which focus on finding ways to extend triplet lifetimes have now been described by Harriman et al. Kneas et al. have examined new types of luminescent sensor on polymer supports, and both Neurauter et al. and Marazuela et al. have designed sensors based on the ruthenium(II) polypyridine complex for the detection of carbon dioxide. A system, based on the formation of twisted intramolecular charge transfer states, has been devised for measuring the molecular weight of polymeric matrices (Al-Hassan et a/.), and the chemical reactivity at the interface of self-assembled monolayers has been assessed using fluorescence spectroscopy (Fox et al). [Pg.2]

With respect to the widely investigated metalloporphyrins for catalytic epoxidation, progress was made in the area of polymer-supported ruthenium porphyrins for asymmetric epoxidation. Manganese-porphyrin complexes attached via peptide linkers to organic polymers showed enhanced selectivity and catalyst stability due to donor atoms in the linker that could coordinate to the metal center. This shows that improvement can be achieved not only by optimization of the polymer or metal complex but also by appropriate choice of the linker. Furthermore, electropolymerization by anodic oxidation of suitable manganese-porphyrin complexes proved to be a promising technique for the preparation of efficient immobilized epoxidation catalysts. [Pg.403]

J. L. Zhang, C. M. Che, Soluble polymer-supported ruthenium porphyrin catalysts for epoxidation, cyclopropanation, and aziridination of alkenes, Org. Lett. 4 (2002) 1911. [Pg.410]

Following Nishiyama s original discovery of an efficient chiral ligand (full name of Pybox) Pybox [137], many chiral complexes have been synthesized and utihzed as catalysts in a variety of asymmetric transformations. Asymmetric cyclopropanation is one such application which uses the Pybox-Ru catalyst [138]. A polymer-supported version ofthe Pybox-Ru complex 218 was prepared by copolymerization of the chiral monomer 217 with styrene and DVB, followed by treatment of the resulting polymer with [RuCl2(p-cymene)]2 in CH2CI2 (Scheme 3.72) [139]. The corresponding ruthenium complexes catalyzed the cyclopropanation reaction of... [Pg.116]

Another type of polymer-supported chiral catalyst for asymmetric cyclopropanation was obtained by electropolymerization of the tetraspirobifluorenylporphyrin ruthenium complex [143]. The cyclopropanation of styrene with diazoacetate, catalyzed by the polymeric catalyst 227, proceeded efficiently at room temperature with good yields (80-90%) and moderate enantioselectivities (up to 53% at -40 °C) (Scheme 3.75). PS-supported versions of the chiral ruthenium-porphyrin complexes 231 (Scheme 3.76) were also prepared and used for the same reaction [144]. The cyclopropanation of styrene by ethyl diazoacetate proceeded well in the presence of the polymeric catalyst to give the product in good yields (60-88%) with high stereoselectivities (71-90% ee). The highest ee-value (90%) was obtained for the cyclopropanation of p-bromostyrene. [Pg.118]


See other pages where Ruthenium polymer-supported is mentioned: [Pg.225]    [Pg.89]    [Pg.229]    [Pg.501]    [Pg.346]    [Pg.12]    [Pg.673]    [Pg.247]    [Pg.119]    [Pg.54]    [Pg.197]    [Pg.143]    [Pg.241]    [Pg.378]    [Pg.201]    [Pg.59]    [Pg.1028]    [Pg.1073]    [Pg.1802]    [Pg.805]    [Pg.398]    [Pg.398]    [Pg.399]    [Pg.410]    [Pg.224]    [Pg.475]   
See also in sourсe #XX -- [ Pg.593 ]




SEARCH



Ruthenium polymer

Ruthenium, supported

© 2024 chempedia.info