Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rotational state effects

Spectral lines are fiirther broadened by collisions. To a first approximation, collisions can be drought of as just reducing the lifetime of the excited state. For example, collisions of molecules will connnonly change the rotational state. That will reduce the lifetime of a given state. Even if die state is not changed, the collision will cause a phase shift in the light wave being absorbed or emitted and that will have a similar effect. The line shapes of collisionally broadened lines are similar to the natural line shape of equation (B1.1.20) with a lifetime related to the mean time between collisions. The details will depend on the nature of the intemrolecular forces. We will not pursue the subject fiirther here. [Pg.1144]

A MBER spectrometer is shown schematically in figure C1.3.1. The teclmique relies on using two inhomogeneous electric fields, the A and B fields, to focus the beam. Since the Stark effect is different for different rotational states, the A and B fields can be set up so that a particular rotational state (with a positive Stark effect) is focused onto the detector. In MBER spectroscopy, the molecular beam is irradiated with microwave or radiofrequency radiation in the... [Pg.2440]

It is beyond the scope of these introductory notes to treat individual problems in fine detail, but it is interesting to close the discussion by considering certain, geometric phase related, symmetry effects associated with systems of identical particles. The following account summarizes results from Mead and Truhlar [10] for three such particles. We know, for example, that the fermion statistics for H atoms require that the vibrational-rotational states on the ground electronic energy surface of NH3 must be antisymmetric with respect to binary exchange... [Pg.28]

In Figure 1, we see that there are relative shifts of the peak of the rotational distribution toward the left from f = 12 to / = 8 in the presence of the geometiic phase. Thus, for the D + Ha (v = 1, DH (v, f) - - H reaction with the same total energy 1.8 eV, we find qualitatively the same effect as found quantum mechanically. Kuppermann and Wu [46] showed that the peak of the rotational state distribution moves toward the left in the presence of a geometric phase for the process D + H2 (v = 1, J = 1) DH (v = 1,/)- -H. It is important to note the effect of the position of the conical intersection (0o) on the rotational distribution for the D + H2 reaction. Although the absolute position of the peak (from / = 10 to / = 8) obtained from the quantum mechanical calculation is different from our results, it is worthwhile to see that the peak... [Pg.57]

The calculations showed [54,55] significant effect of the GP on scattering angle resolved cross-sections for a particular final rotational state. It is interesting to see the change of these distributions due to the geometric phase... [Pg.58]

Differential cross-sections for particular final rotational states (f) of a particular vibrational state (v ) are usually smoothened by the moment expansion (M) in cosine functions mentioned in Eq, (38). Rotational state distributions for the final vibrational state v = 0 and 1 are presented in [88]. In each case, with or without GP results are shown. The peak position of the rotational state distribution for v = 0 is slightly left shifted due to the GP effect, on the contrary for v = 1, these peaks are at the same position. But both these figures clearly indicate that the absolute numbers in each case (with or without GP) are different. [Pg.64]

The cancellation of gas phase spectral features using the "half plate design Is far superior to methods Involving a second gas cell placed In the reference beam. This Is because the gas density and Its rotational state population will differ In the two cells for different sample (and therefore gas) temperatures. For high sensitivity measurements, these effects can be difficult to handle using two cells. [Pg.407]

H2O, D2O and HOD with D detection at the Lyman-a wavelength excitation. Based on theoretical analysis, this single rotational state product propensity is attributed to a dynamically constrained threshold effect in the HOD photodissociation process.41... [Pg.119]

Apart from molecular vibrations, also rotational states bear a significant influence on the appearance of vibrational spectra. Similar to electronic transitions that are influenced by the vibrational states of the molecules (e.g. fluorescence, Figure 3-f), vibrational transitions involve the rotational state of a molecule. In the gas phase the rotational states may superimpose a rotational fine structure on the (mid-)IR bands, like the multitude of narrow water vapour absorption bands. In condensed phases, intermolecular interactions blur the rotational states, resulting in band broadening and band shifting effects rather than isolated bands. [Pg.121]

The objective of this first part of the book is to explain in a chemically intelligible fashion the physical origin of microwave-matter interactions. After consideration of the history of microwaves, and their position in the electromagnetic spectrum, we will examine the notions of polarization and dielectric loss. The orienting effects of the electric field, and the physical origin of dielectric loss will be analyzed, as will transfers between rotational states and vibrational states within condensed phases. A brief overview of thermodynamic and athermal effects will also be given. [Pg.2]

The energy gap between electronic states is much greater than that between vibrational states, which in turn is much greater than that between rotational states. As a result, we are able to adequately describe the effects of electronic transitions within molecules by considering quantised electronic and vibrational states. [Pg.32]


See other pages where Rotational state effects is mentioned: [Pg.810]    [Pg.909]    [Pg.2084]    [Pg.2312]    [Pg.58]    [Pg.59]    [Pg.62]    [Pg.80]    [Pg.366]    [Pg.23]    [Pg.203]    [Pg.305]    [Pg.181]    [Pg.93]    [Pg.31]    [Pg.74]    [Pg.112]    [Pg.119]    [Pg.130]    [Pg.156]    [Pg.21]    [Pg.162]    [Pg.163]    [Pg.166]    [Pg.184]    [Pg.236]    [Pg.98]    [Pg.405]    [Pg.157]    [Pg.22]    [Pg.265]    [Pg.267]    [Pg.286]    [Pg.289]    [Pg.306]   
See also in sourсe #XX -- [ Pg.155 , Pg.156 , Pg.157 , Pg.158 , Pg.159 , Pg.191 , Pg.205 , Pg.324 , Pg.325 , Pg.326 , Pg.327 , Pg.328 ]




SEARCH



Rotational states

© 2024 chempedia.info