Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rotational diffusion equation dielectric relaxation

In the fixed axis rotation model of dielectric relaxation of polar molecules a typical member of the assembly is a rigid dipole of moment p rotating about a fixed axis through its center. The dipole is specified by the angular coordinate < ) (the azimuth) so that it constitutes a system of 1 (rotational) degree of freedom. The fractional diffusion equation for the time evolution of the probability density function W(4>, t) in configuration space is given by Eq. (52) which we write here as... [Pg.306]

Existence of a high degree of orientational freedom is the most characteristic feature of the plastic crystalline state. We can visualize three types of rotational motions in crystals free rotation, rotational diffusion and jump reorientation. Free rotation is possible when interactions are weak, and this situation would not be applicable to plastic crystals. In classical rotational diffusion (proposed by Debye to explain dielectric relaxation in liquids), orientational motion of molecules is expected to follow a diffusion equation described by an Einstein-type relation. This type of diffusion is not known to be applicable to plastic crystals. What would be more appropriate to consider in the case of plastic crystals is collision-interrupted molecular rotation. [Pg.207]

Chapter 8 by W. T. Coffey, Y. P. Kalmykov, and S. V. Titov, entitled Fractional Rotational Diffusion and Anomalous Dielectric Relaxation in Dipole Systems, provides an introduction to the theory of fractional rotational Brownian motion and microscopic models for dielectric relaxation in disordered systems. The authors indicate how anomalous relaxation has its origins in anomalous diffusion and that a physical explanation of anomalous diffusion may be given via the continuous time random walk model. It is demonstrated how this model may be used to justify the fractional diffusion equation. In particular, the Debye theory of dielectric relaxation of an assembly of polar molecules is reformulated using a fractional noninertial Fokker-Planck equation for the purpose of extending that theory to explain anomalous dielectric relaxation. Thus, the authors show how the Debye rotational diffusion model of dielectric relaxation of polar molecules (which may be described in microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the unit sphere) may be extended via the continuous-time random walk to yield the empirical Cole-Cole, Cole-Davidson, and Havriliak-Negami equations of anomalous dielectric relaxation from a microscopic model based on a... [Pg.586]

The only microscopic feature suU remembered by the system when described by Eq. (4.3) is that of the H-bond dynamics as simulated by the variable if. As mentioned in the introduction, the integrations in time appearing on the right-hand side of Eq. (4.3) are made legitimate by the fact that the correlation functions dielectric relaxation and self-diffusion processes. Henceforth we shall neglect the third term on the right-hand side of Eq. (4.3) concerning rototranslational phenomena. This assumption allows us to obtain two independent equations for rotation and translation, respectively. [Pg.290]

Another most important question in anomalous dielectric relaxation is the physical interpretation of the parameters a and v in the various relaxation formulas and what are the physical conditions that give rise to these parameters. Here we shall give a reasonably convincing derivation of the fractional Smoluckowski equation from the discrete orientation model of dielectric relaxation. In the continuum limit of the orientation sites, such an approach provides a justification for the fractional diffusion equation used in the explanation of the Cole-Cole equation. Moreover, the fundamental solution of that equation for the free rotator will, by appealing to self-similarity, provide some justification for the neglect of spatial derivatives of higher order than the second in the Kramers-Moyal expansion. In order to accomplish this, it is first necessary to explain the concept of the continuous-time random walk (CTRW). [Pg.294]

In the present section, it is demonstrated how the linear response of an assembly of noninteracting polar Brownian particles to a small external field F applied parallel and perpendicular to the bias field Fo may be calculated in the context of the fractional noninertial rotational diffusion in the same manner as normal rotational diffusion [8]. In order to carry out the calculation, it is assumed that the rotational Brownian motion of a particle may be described by a fractional noninertial Fokker-Planck (Smoluchowski) equation, in which the inertial effects are neglected. Both exact and approximate solutions of this equation are presented. We shall demonstrate that the characteristic times of the normal diffusion process, namely, the integral and effective relaxation times obtained in Refs. 8, 65, and 67, allow one to evaluate the dielectric response for anomalous diffusion. Moreover, these characteristic times yield a simple analytical equation for the complex dielectric susceptibility tensor describing the anomalous relaxation of the system. The exact solution of the problem reduces to the solution of the infinite hierarchies of differential-recurrence equations for the corresponding relaxation functions. The longitudinal and transverse components of the susceptibility tensor may be calculated exactly from the Laplace transform of these relaxation functions using linear response theory [72]. [Pg.338]

The solutions to the anisotropic diffusion equation can be written as a series expansion, each term of which can be associated with a particular relaxation time. For a harmonic perturbation of the rotational distribution function, as occurs in a dielectric relaxation experiment with an ac electric field, it was found that a single relaxation time was sufficient to describe the relaxation of p, and this could be expressed in terms of the relaxation time Xq) for in the absence of a nematic potential by ... [Pg.280]

In the study of dielectric relaxation, temperature is an important variable, and it is observed that relaxation times decrease as the temperature increases. In Debye s model for the rotational diffusion of dipoles, the temperature dependence of the relaxation is determined by the diffusion constant or microscopic viscosity. For liquid crystals the nematic ordering potential contributes to rotational relaxation, and the temperature dependence of the order parameter influences the retardation factors. If rotational diffusion is an activated process, then it is appropriate to use an Arrhenius equation for the relaxation times ... [Pg.282]


See other pages where Rotational diffusion equation dielectric relaxation is mentioned: [Pg.288]    [Pg.135]    [Pg.340]    [Pg.587]    [Pg.306]    [Pg.348]    [Pg.364]    [Pg.419]    [Pg.745]    [Pg.184]    [Pg.285]    [Pg.73]    [Pg.340]    [Pg.203]    [Pg.225]   


SEARCH



Dielectric relaxation

Diffuse rotation

Diffusion equations

Diffusion relaxation

Diffusion rotational

Relaxation equation

Rotational diffusion equation

Rotational diffusivity

Rotational relaxation

© 2024 chempedia.info