Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rotation axis symmetry operator

Improper Rotations A rotation by 360/n about an axis followed by a reflection in a plane perpendicular to the axis is called rotation-reflection symmetry operation. A combined operation of this kind is called a rotation-reflection or an improper rotation and is denoted by the symbol Sn standing for the combination of a rotation through an angle 2%/n about some axis and reflection in a plane perpendicular to the axis. C4 operation followed by reflection through the plane of molecule gives S4 axis. If we use the symbol oh to denote the reflection in the plane perpendicular to rotatory-reflection axis we can write... [Pg.160]

What has been said here is true but obscures another fundamental property of the Fourier transform, one that complicates matters a bit but not hopelessly so. The Fourier transform fails to directly carry translational relationships from one space to another, in particular, from real space into reciprocal space. This means that the transform does not discriminate between asymmetric units based on the distances between them. The immediate relevance of this is that a set of asymmetric units related by a screw axis symmetry operator (which has translational components) in real space is transformed into diffraction space as though it simply contained a pure rotation axis. The translational components are lost. If our crystal has a 6i axis, we will see sixfold symmetry in the diffraction pattern. If we have 2i2j2i symmetry in real space, the diffraction pattern will exhibit 222 (or more properly, mmm) symmetry. [Pg.130]

A rotation by 2x/n about an axis (not necessarily a symmetry axis) followed by reflection in a plane (not necessarily a symmetry plane) perpendicular to the axis of rotation is called a rotation-reflection symmetry operation, the axis is called a rotation-reflection axis and given the symbol iS . Figure 1.10 demonstrates the Ss when neither the 6-fold axis rotation axis nor the horizontal reflection plane are symmetry operations of the system. Whenever a figure has a Cn and a horizontal plane of symmetry, an is automatically implied. The square (Figure 1.6) provides an example of this. [Pg.202]

This example serves to illustrate one of the fundamental properties of symmetry operations—that they can be multiplied together in much the same manner as the set of real numbers can be multiplied (with the exception that the symmetry operations of a molecule do not necessarily commute and therefore the order of multiplication matters). Iwo notations performed in succession are identical to one C3 rotation about the same axis. Similarly, three notations are equivalent to one C2 rotation. The symmetry operations are said to multiply together, as shown in Equations (8.1) and (8.2), where (by convention) the last operation in the product is the one that is always performed first. [Pg.181]

Note that the two rotations (symmetry operations) are associated with the same rotational axis (symmetry element) see footnote 3. [Pg.50]

At this point the reader may feel that we have done little in the way of explaining molecular synnnetry. All we have done is to state basic results, nonnally treated in introductory courses on quantum mechanics, connected with the fact that it is possible to find a complete set of simultaneous eigenfiinctions for two or more commuting operators. However, as we shall see in section Al.4.3.2. the fact that the molecular Hamiltonian //coimmites with and F is intimately coimected to the fact that //commutes with (or, equivalently, is invariant to) any rotation of the molecule about a space-fixed axis passing tlirough the centre of mass of the molecule. As stated above, an operation that leaves the Hamiltonian invariant is a symmetry operation of the Hamiltonian. The infinite set of all possible rotations of the... [Pg.140]

Another distinction we make concerning synnnetry operations involves the active and passive pictures. Below we consider translational and rotational symmetry operations. We describe these operations in a space-fixed axis system (X,Y,Z) with axes parallel to the X, Y, Z) axes, but with the origin fixed in space. In the active picture, which we adopt here, a translational symmetry operation displaces all nuclei and electrons in the molecule along a vector, say. [Pg.155]

Another one-dimensional representation of the group ean be obtained by taking rotation about the Z-axis (the C3 axis) as the objeet on whieh the symmetry operations aet ... [Pg.589]

Corresponding to every symmetry element is a symmetry operation which is given the same symbol as the element. For example, C also indicates the actual operation of rotation of the molecule by 2n/n radians about the axis. [Pg.74]

The cyclobutene-butadiene interconversion can serve as an example of the reasoning employed in construction of an orbital correlation diagram. For this reaction, the four n orbitals of butadiene are converted smoothly into the two n and two a orbitals of the ground state of cyclobutene. The analysis is done as shown in Fig. 11.3. The n orbitals of butadiene are ip2, 3, and ij/. For cyclobutene, the four orbitals are a, iz, a, and n. Each of the orbitals is classified with respect to the symmetiy elements that are maintained in the course of the transformation. The relevant symmetry features depend on the structure of the reacting system. The most common elements of symmetiy to be considered are planes of symmetiy and rotation axes. An orbital is classified as symmetric (5) if it is unchanged by reflection in a plane of symmetiy or by rotation about an axis of symmetiy. If the orbital changes sign (phase) at each lobe as a result of the symmetry operation, it is called antisymmetric (A). Proper MOs must be either symmetric or antisymmetric. If an orbital is not sufficiently symmetric to be either S or A, it must be adapted by eombination with other orbitals to meet this requirement. [Pg.609]

Fig. 1. The 2D graphene sheet is shown along with the vector which specifies the chiral nanotube. The chiral vector OA or Cf, = nOf + tnoi defined on the honeycomb lattice by unit vectors a, and 02 and the chiral angle 6 is defined with respect to the zigzag axis. Along the zigzag axis 6 = 0°. Also shown are the lattice vector OB = T of the ID tubule unit cell, and the rotation angle 4/ and the translation r which constitute the basic symmetry operation R = (i/ r). The diagram is constructed for n,m) = (4,2). Fig. 1. The 2D graphene sheet is shown along with the vector which specifies the chiral nanotube. The chiral vector OA or Cf, = nOf + tnoi defined on the honeycomb lattice by unit vectors a, and 02 and the chiral angle 6 is defined with respect to the zigzag axis. Along the zigzag axis 6 = 0°. Also shown are the lattice vector OB = T of the ID tubule unit cell, and the rotation angle 4/ and the translation r which constitute the basic symmetry operation R = (i/ r). The diagram is constructed for n,m) = (4,2).
Applying the above symmetry formulation to armchair (n = m) and zigzag (m = 0) nanotubes, we find that such nanotubes have a symmetry group given by the product of the cyclic group and Cj , where 2n consists of only two symmetry operations the identity, and a rotation by 2ir/2n about the tube axis followed by a translation by T/2. Armchair and zig-... [Pg.134]

Here n is an operator of molecular axis orientation. In the classical description, it is just a unitary vector, directed along the rotator axis. Angle a sets the declination of the rotator from the liquid cage axis. Now a random variable, which is conserved for the fixed form of the cell and varies with its hopping transformation, is a joint set of vectors e, V, where V = VU...VL,.... Since the former is determined by a break of the symmetry and the latter by the distance between the molecule and its environment, they are assumed to vary independently. This means that in addition to (7.17), we have... [Pg.242]

For any symmetry operator T = T 0) (rewritten r when operating on the domain of basis functions x)) for instance, the rotation-reflexion about the z-axis, with matrix representation... [Pg.288]

Rotoinversion. The symmetry element is a rotoinversion axis or, for short, an inversion axis. This refers to a coupled symmetry operation which involves two motions take a rotation through an angle of 360/N degrees immediately followed by an inversion at a point located on the axis (Fig. 3.3) ... [Pg.14]

A rotoreflection is a coupled symmetry operation of a rotation and a reflection at a plane perpendicular to the axis. Rotoreflection axes are identical with inversion axes, but the multiplicities do not coincide if they are not divisible by 4 (Fig. 3.3). In the Hermann-Mauguin notation only inversion axes are used, and in the Schoenflies notation only rotoreflection axes are used, the symbol for the latter being SN. [Pg.15]

When two symmetry operations are combined, a third symmetry operation can result automatically. For example, the combination of a twofold rotation with a reflection at a plane perpendicular to the rotation axis automatically results in an inversion center at the site where the axis crosses the plane. It makes no difference which two of the three symmetry operations are combined (2, m or T), the third one always results (Fig. 3.6). [Pg.16]

If an atom is situated on a center of symmetry, on a rotation axis or on a reflection plane, then it occupies a special position. On execution of the corresponding symmetry operation, the atom is mapped onto itself. Any other site is a general position. A special position is connected with a specific site symmetry which is higher than 1. The site symmetry at a general position is always 1. [Pg.22]

Translationengleiche subgroups have an unaltered translation lattice, i.e. the translation vectors and therefore the size of the primitive unit cells of group and subgroup coincide. The symmetry reduction in this case is accomplished by the loss of other symmetry operations, for example by the reduction of the multiplicity of symmetry axes. This implies a transition to a different crystal class. The example on the right in Fig. 18.1 shows how a fourfold rotation axis is converted to a twofold rotation axis when four symmetry-equivalent atoms are replaced by two pairs of different atoms the translation vectors are not affected. [Pg.212]

The occurrence of twinned crystals is a widespread phenomenon. They may consist of individuals that can be depicted macroscopically as in the case of the dovetail twins of gypsum, where the two components are mirror-inverted (Fig. 18.8). There may also be numerous alternating components which sometimes cause a streaky appearance of the crystals (polysynthetic twin). One of the twin components is converted to the other by some symmetry operation (twinning operation), for example by a reflection in the case of the dovetail twins. Another example is the Dauphine twins of quartz which are intercon-verted by a twofold rotation axis (Fig. 18.8). Threefold or fourfold axes can also occur as symmetry elements between the components the domains then have three or four orientations. The twinning operation is not a symmetry operation of the space group of the structure, but it must be compatible with the given structural facts. [Pg.223]

First, it is apparent that reflection through the xz plane, indicated by transforms H into H". More precisely, we could say that H and H" are interchanged by reflection. Because the z-axis contains a C2 rotation axis, rotation about the z-axis of the molecule by 180° will take H into H" and H" into H, but with the "halves" of each interchanged with respect to the yz plane. The same result would follow from reflection through the xz plane followed by reflection through the yz plane. Therefore, we can represent this series of symmetry operations in the following way ... [Pg.148]

Of particular importance in the physical sciences is the fact that the symmetry operations of any symmetrical system constitute a group under the operators that effect symmetry transformations, such as rotations or reflections. A symmetry transformation is an operation that leaves a physical system invariant. Thus any rotation of a circle about the perpendicular axis through its centre is a symmetry transformation for the circle. The permutation of any two identical atoms in a molecule is a symmetry transformation... [Pg.56]

Each set of four numbers ( 1) constitutes an irreducible representation (i.r.) of the symmetry group, on the basis of either a coordinate axis or an axial rotation. According to a well-known theorem of group theory [2.7.4(v)], the number of i.r. s is equal to the number of classes of that group. The four different i.r. s obtained above therefore cover all possibilities for C2V. The theorem thus implies that any representation of the symmetry operators of the group, on whatever basis, can be reduced to one of these four. In summary, the i.r. s of C2 are given by Table 1. [Pg.295]

The A and B labels in Table 1 follow the convention that A s have characters of +1 for the rotation axis of highest order (C2 in the present case) while B s have character -1. A, by convention, is the totally symmetric i.r., since all operations of the group turn something of A symmetry into itself. Every group has a totally symmetric i.r. I.r. s with suffix 1 are symmetric (character +1) under av, whereas those with suffix 2 are antisymmetric (character -1). Table 1 is an example of a character table. Two-dimensional representations are denoted by symbols E. [Pg.297]

An electric dipole operator, of importance in electronic (visible and uv) and in vibrational spectroscopy (infrared) has the same symmetry properties as Ta. Magnetic dipoles, of importance in rotational (microwave), nmr (radio frequency) and epr (microwave) spectroscopies, have an operator with symmetry properties of Ra. Raman (visible) spectra relate to polarizability and the operator has the same symmetry properties as terms such as x2, xy, etc. In the study of optically active species, that cause helical movement of charge density, the important symmetry property of a helix to note, is that it corresponds to simultaneous translation and rotation. Optically active molecules must therefore have a symmetry such that Ta and Ra (a = x, y, z) transform as the same i.r. It only occurs for molecules with an alternating or improper rotation axis, Sn. [Pg.299]

The unit cell considered here is a primitive (P) unit cell that is, each unit cell has one lattice point. Nonprimitive cells contain two or more lattice points per unit cell. If the unit cell is centered in the (010) planes, this cell becomes a B unit cell for the (100) planes, an A cell for the (001) planes a C cell. Body-centered unit cells are designated I, and face-centered cells are called F. Regular packing of molecules into a crystal lattice often leads to symmetry relationships between the molecules. Common symmetry operations are two- or three-fold screw (rotation) axes, mirror planes, inversion centers (centers of symmetry), and rotation followed by inversion. There are 230 different ways to combine allowed symmetry operations in a crystal leading to 230 space groups.12 Not all of these are allowed for protein crystals because of amino acid asymmetry (only L-amino acids are found in proteins). Only those space groups without symmetry (triclinic) or with rotation or screw axes are allowed. However, mirror lines and inversion centers may occur in protein structures along an axis. [Pg.77]

Notice that the symmetry operations of each point group by continued repetition always bring us back to the point from which we started. Considering, however, a space crystalline pattern, additional symmetry operations can be observed. These involve translation and therefore do not occur in point groups (or crystal classes). These additional operations are glide planes which correspond to a simultaneous reflection and translation and screw axis involving simultaneous rotation and translation. With subsequent application of these operations we do not obtain the point from which we started but another, equivalent, point of the lattice. The symbols used for such operations are exemplified as follows ... [Pg.100]


See other pages where Rotation axis symmetry operator is mentioned: [Pg.36]    [Pg.34]    [Pg.155]    [Pg.237]    [Pg.582]    [Pg.40]    [Pg.30]    [Pg.39]    [Pg.41]    [Pg.133]    [Pg.202]    [Pg.405]    [Pg.37]    [Pg.26]    [Pg.402]    [Pg.147]    [Pg.138]    [Pg.237]    [Pg.118]    [Pg.189]    [Pg.190]    [Pg.104]    [Pg.178]   
See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Operator rotational

Operator symmetry

Rotating operation

Rotation axis

Rotation operation

Rotation operator

Rotation symmetry

Rotation, symmetry operation

Rotational operations

Rotational symmetry operations

Symmetry axis

Symmetry operations

Symmetry operations symmetries

Symmetry operators rotation

Symmetry operators/operations

Symmetry rotation axis

Symmetry rotational axis

© 2024 chempedia.info