Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rotating disk electrode surface

Cu9ln4 and Cu2Se. They performed electrodeposition potentiostatically at room temperature on Ti or Ni rotating disk electrodes from acidic, citrate-buffered solutions. It was shown that the formation of crystalline definite compounds is correlated with a slow surface process, which induced a plateau on the polarization curves. The use of citrate ions was found to shift the copper deposition potential in the negative direction, lower the plateau current, and slow down the interfacial reactions. [Pg.117]

In such systems the researcher can electrochemically clean and precondition the metal electrode before each run to provide an identical surface for the anodic and the cathodic half-reactions as well as for the catalytic reaction between them. Use of a rotating disk electrode/ckatalyst also allows surface- and diffusion-controlled processes to be easily distin-guished. ... [Pg.7]

The constancy of the diffusion layer over the entire surface and thus the uniform current-density distribution are important features of rotating-disk electrodes. Electrodes of this kind are called electrodes with uniformly accessible surface. It is seen from the quantitative solution of the hydrodynamic problem (Levich, 1944) that for RDE to a first approximation... [Pg.66]

Bhzanac BB, Arenz M, Ross PN, Markovic NM. 2004b. Surface electrochemistry of CO on reconstructed gold single crystal surfaces studied by infrared reflection absorption spectroscopy and rotating disk electrode. J Am Chem Soc 126 10130-10141. [Pg.199]

Figure 8.12 Relationships between the catalytic properties and electronic structure of Pt3M alloys correlation between the specific activity for the oxygen reduction reaction measured experimentally by a rotating disk electrode on Pt3M surfaces in 0.1 M HCIO4 at 333 K and 1600 lev/min versus the li-band center position for (a) Pt-skin and (b) Pt-skeleton surfaces. (Reprinted with permission from Stamenkovic et al. [2007b]. Copyright 2007. Nature Pubhshing Group.)... Figure 8.12 Relationships between the catalytic properties and electronic structure of Pt3M alloys correlation between the specific activity for the oxygen reduction reaction measured experimentally by a rotating disk electrode on Pt3M surfaces in 0.1 M HCIO4 at 333 K and 1600 lev/min versus the li-band center position for (a) Pt-skin and (b) Pt-skeleton surfaces. (Reprinted with permission from Stamenkovic et al. [2007b]. Copyright 2007. Nature Pubhshing Group.)...
Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ. 1998. Characterization of high-surface area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145 2354-2358. [Pg.462]

Schmidt TJ, Gasteiger HA, Behm RJ. 1999b. Rotating disk electrode measurements on a high-surface area Pt/Vulcan carbon fuel cell catalyst. J Electrochem Soc 146 1296-1304. [Pg.462]

Figure 14.12 CO bulk electro-oxidation at PtRu alloys, (a, b) PcRui j /Ru(0001) (x = 0.07, 0.25, 0.47) surface alloys measured in a flow cell with a CO-saturated electrolyte, (c) Freshly sputtered Pto.sRuo.s bulk alloy in a rotating disk electrode setup (data from Gasteiger et al. [1995]), compared with a Pto.53Ruo,47/Ru((X)01) surface alloy. Figure 14.12 CO bulk electro-oxidation at PtRu alloys, (a, b) PcRui j /Ru(0001) (x = 0.07, 0.25, 0.47) surface alloys measured in a flow cell with a CO-saturated electrolyte, (c) Freshly sputtered Pto.sRuo.s bulk alloy in a rotating disk electrode setup (data from Gasteiger et al. [1995]), compared with a Pto.53Ruo,47/Ru((X)01) surface alloy.
In the most common approach, a water-insoluble metaUoporphyrin is deposited on the surface of a rotating disk electrode (RDE) or on the disk of a rotating ring-disk electrode (RRDE Fig. 18.7a) as a film of poorly defined morphology, either by spontaneous adsorption from a solution of the catalyst in an organic solvent or by evaporation of an aliquot of such a solution onto the electrode. It is impossible to know the... [Pg.648]

Electrode processes are often studied under steady-state conditions, for example at a rotating disk electrode or at a ultramicroelectrode. Polarog-raphy with dropping electrode where average currents during the droptime are often measured shows similar features as steady-state methods. The distribution of the concentrations of the oxidized and reduced forms at the surface of the electrode under steady-state conditions is shown in Fig. 5.12. For the current density we have (cf. Eq. (2.7.13))... [Pg.295]

The rotating hemispherical electrode (RHSE) was originally proposed by the author in 1971 as an analytical tool for studying high-rate corrosion and dissolution reactions [13]. Since then, much work has been published in the literature. The RHSE has a uniform primary current distribution, and its surface geometry is not easily deformed by metal deposition and dissolution reactions. These features have made the RHSE a complementary tool to the rotating disk electrode (RDE). [Pg.171]

The position of a reference electrode for the RHSE is not as crucial as for the rotating disk electrode because of the uniform potential distribution near the surface. To minimize the flow disturbances which might be introduced by a reference capillary, it is advisable to place the reference tip near the equator rather than near the pole of rotation. For a reference electrode located at a large distance from the RHSE, the ohmic potential drop may be estimated from Eq. (57) as (47) ... [Pg.192]

Figure 3a is an illustration of the effect of surface overpotential on the limiting-current plateau, in the case of copper deposition from an acidified solution at a rotating-disk electrode. The solid curves are calculated limiting currents for various values of the exchange current density, expressed as ratios to the limiting-current density. Here the surface overpotential is related to the current density by the Erdey Gruz-Volmer-Butler equation (V4) ... [Pg.225]

It was not until 1987, before a second model on electrocodeposition was published by Buelens [37, 58], From experimental observations on the codeposition of particles on a rotating disk electrode (RDE) as a function of current density, rotation speed and bath composition, that could not be explained by Guglielmi, she suggested that a particle will only be incorporated into the deposit if a certain amount of the adsorbed ions on the particle surface is reduced. This is one possible way to account for the field-assisted adsorption, held responsible for the transition between loosely and strongly adsorbed particles in the model of Guglielmi. This proposition yields the probability P(k/K,i) for the incorporation of a particle based on the reduction of k out of K ions, bound to its surface, at current density i... [Pg.213]

FIGURE 1.10. Rotating disk electrode voltammetry. A + e B, with a concentration of A equal to C° and no B in the solution a Linearized concentration profiles —, at the plateau (vertical arrow in b), , at a less negative potential (horizontal arrow in b). b Current potential curve, c Concentrations of A and B at the electrode surface, d Logarithmic analysis of the current potential curve. [Pg.22]

Potentials vs SHE. High-surface-area carbon supports in 02-saturated buffer. Catalyzed by bilirubin oxidase in the presence of chloride. Catalyzed by fungal laccase, chloride absent. Moderate stirring by bubbled gas. Strong stirring by rotating disk electrode at 4 krpm. [Pg.637]

Assume that the reaction ox + c <=> red at the planar electrode is diffusion controlled. Sketch and correlate the concentration profiles Cox =f(x), where x is the distance from the electrode surface to the bulk of the solution, with the shape of the current-potential curve for electrolysis carried out at (a) a stationary disk electrode and (b) a rotating disk electrode. Support your explanation by the equations. (Skompska)... [Pg.680]


See other pages where Rotating disk electrode surface is mentioned: [Pg.131]    [Pg.131]    [Pg.111]    [Pg.319]    [Pg.545]    [Pg.256]    [Pg.469]    [Pg.578]    [Pg.371]    [Pg.374]    [Pg.191]    [Pg.218]    [Pg.228]    [Pg.241]    [Pg.247]    [Pg.249]    [Pg.250]    [Pg.259]    [Pg.162]    [Pg.218]    [Pg.330]    [Pg.261]    [Pg.147]    [Pg.251]    [Pg.546]    [Pg.424]    [Pg.678]   


SEARCH



Disk electrodes surface

Electrode surface

Electrodes rotator

Rotating Surfaces

Rotating disk electrode

© 2024 chempedia.info