Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ring-opening polymerization polyacetal

Ring opening polymerization may also occur by an addition chain reaction. For example, a ring opening reaction polymerizes trioxane to a polyacetal in the presence of an acid catalyst. Formaldehyde also produces the same polymer ... [Pg.314]

Among the more common thermoplastics from ring opening polymerization of interest in composite processing are polylactams, polyethers, polyacetals, and polycycloolefins. It has also been shown that polycarbonates can be produced from cyclic carbonates [22], Anionic ring opening polymerization of caprolactam to nylon 6 is uniquely suited to form a thermoplastic matrix for fiber-reinforced composites, specifically by the reaction injection pultrusion process [23-25]. The fast reaction kinetics with no by-products and the crystalline... [Pg.42]

By organic chemistry formalism, polyacetals are reaction products of aldehydes with polyhydric alcohols. Polymers generated from aldehydes, however, either via cationic or anionic polymerization are generally known as polyacetals because of repeating acetal linkages. Formaldehyde polymers, which are commercially known as acetal resins, are produced by the cationic ring opening polymerization of the cyclic trimer of formaldehyde, viz., trioxane [29-30] (Fig. 1.5). [Pg.44]

Another monomer that belongs to this group is cyclic trimer of formaldehyde, 1,3,5-trioxane. Cationic polymerization of 1,3,5-trioxane leading to polyoxymethylene (polyformaldehyde, polyacetal) is one of the few industrially important processes in cationic ring-opening polymerization. [Pg.491]

Polyoxymethylene polymers, POM, commonly known as polyacetals or Acetal resins are linear thermoplastic polymers containing predominantly the -CH -O- repeat unit in their backbone. There are two types of acetal resins available commercially (1) homopolymers made by the polymerization of formaldehyde, followed by endcapping, (2) copolymers derived from the ring opening polymerization of trioxane (a cyclic trimer of formaldehyde), and a small amount of a comonomer such as ethylene oxide. Acetal resins are... [Pg.1092]

Polyethers are obtained from three different classes of monomers, namely, carbonyl compounds, cyclic ethers, and phenols. They are manufactured by a variety of polymerization processes, such as polymerization (polyacetal), ring-opening polymerization (polyethylene oxide, polyprophylene oxide, and epoxy resins), oxidative coupling (Polyphenylene oxide), and polycondensation (polysulfone). [Pg.486]

Polyoxymethylene (polyacetal) is the polymer of formaldehyde and is obtained by polymerization of aqueous formaldehyde or ring-opening polymerization of trioxane (cyclic trimer of formaldehyde, melting point 60-60°C), the latter being the preferred method [52]. This polymerization of trioxane is conducted in bulk with cationic initiators. In contrast, highly purified formaldehyde is polymerized in solution using using either cationic or anionic initiators. [Pg.487]

It should be noted that ring-opening polymerization of cyclic acetals is not the only route to polyacetals. Polyacetals are also formed by ionic polymerization of aldehydes, by polycondensation of aldehydes and diols, or by polyaddition of divinyl ethers to diols. " In this chapter, however, only cationic ring-opening polymerization of cyclic acetals will be discussed. [Pg.184]

Another synthetic strategy is the transformation of ring-opening polymerization to controlled radical polymerization. The transformation of the active site from one to the other can be performed in the polymerization system or after separation and purification. The active sites can be obtained by reacting functionalized polymer with appropriate reagents. Various block copolymers containing polyether (or polyester, or polysiloxane or polyacetal) blocks and vinyl polymer blocks have been prepared by this method. [Pg.97]

Commercial polymers of formaldehyde are also produced using cationic polymerization. The polymer is produced by ring opening of trioxane. Since the polyacetal, POM, is not thermally stable, the hydroxyl groups are esterified (capped) by acetic anhydride (structure 5.22). These polymers are also called poly(methylene oxides). The commercial polymer is a... [Pg.140]

Copolymer Structure and Sequence Distribution. The free radical polymerization of cyclic ketene acetals had two possibilities forming two different structures. One was the ring opening producing a polyester, and the other was ring retention producing polyacetals. The free radicd polymerizations of monomer MDO... [Pg.280]

Polyoxymethylene (polyacetal) — sometimes known as polyformaldehyde — is the polymer of formaldehyde. It is obtained either by anionic or cationic solution polymerization of formaldehyde or cationic ring-opening bulk polymerization of trioxane. Highly purified formaldehyde is polymerized in the presence of an inert solvent such as hexane at atmospheric pressure and a temperature usually in the range of -50 to 70°C. The cationic bulk polymerization of trioxane is the preferred method of production of polyoxymethylene. [Pg.439]

Many carbon-chain polymers and other simple chains, such as the polyacetals (polyethers), are produced by chain reaction polymerization, either via double bonds or by ring-opening. Such polymerizations involve repeated addition of a monomer molecule to an active center, which may be a radical, an ion or a co-ordination complex. [Pg.1026]

Polyformaldehyde. Polyformaldehyde or polyacetal is made by two different processes. Delrin is made from formaldehyde by anionic polymerization catalyzed by a tertiary amine. The homopolymer is end-capped with acetic anhydride. Celcon is made from trioxane cationic copolymerization using boron trifluoride catalyst and ethylene oxide (2-3%) as the comonomer. Boron trifluoride is a Lewis acid that associates with trioxane and opens up the six-membered ring. Ethylene oxide provides the end capping. Without an end cap, polyformaldehyde is thermally unstable and loses formaldehyde units. [Pg.98]

Commercial polyacetal copolymers contain 0.1 to 15 mole percent of a cyclic ether, commonly ethylene oxide or 1,3-dioxolane. Typical catalysts for this reaction are BF, or its ether complexes. In 1964, Weissermel and coworkers[5] showed that in the copolymerization of trioxane with ethylene oxide, the latter was almost completely consumed before any visible polymer was observed. During this stage of the polymerization, soluble prepolymers of ethylene oxide could be isolated [6], These prepolymers consisted primarily of oligomers with mono-, di-, and tri-ethylene oxide units. Celanese workers in 1980[7] verified also the presence of cyclic ethers, predominately 1,3-dioxolane and 1,3,5-tri-oxepane, as part of the reaction mixture. These are likely formed as reaction products of ethylene oxide and monomeric formaldehyde generated from the opening of the trioxane ring. [Pg.116]


See other pages where Ring-opening polymerization polyacetal is mentioned: [Pg.44]    [Pg.5]    [Pg.10]    [Pg.484]    [Pg.245]    [Pg.252]    [Pg.1835]    [Pg.115]    [Pg.194]    [Pg.194]    [Pg.208]    [Pg.141]    [Pg.142]    [Pg.748]    [Pg.331]    [Pg.28]   


SEARCH



Polyacetals

© 2024 chempedia.info