Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ring closure conrotatory

Z,6Z,8 )-Decatetraene has been cyclizcd to give 7,8-dimethyl-1,3,5-cycloocta-triene. Predict the manner of ring closure—conrotatory or disrotatory--for both thermal and photochemical reactions, and predict the stereochemistry of the product in each case. [Pg.1258]

Electi ocyclic reactions are examples of cases where ic-electiDn bonds transform to sigma ones [32,49,55]. A prototype is the cyclization of butadiene to cyclobutene (Fig. 8, lower panel). In this four electron system, phase inversion occurs if no new nodes are fomred along the reaction coordinate. Therefore, when the ring closure is disrotatory, the system is Hiickel type, and the reaction a phase-inverting one. If, however, the motion is conrotatory, a new node is formed along the reaction coordinate just as in the HCl + H system. The reaction is now Mdbius type, and phase preserving. This result, which is in line with the Woodward-Hoffmann rules and with Zimmerman s Mdbius-Huckel model [20], was obtained without consideration of nuclear symmetry. This conclusion was previously reached by Goddard [22,39]. [Pg.347]

SUBSTITUTED BUTADIENES. The consequences of p-type orbitals rotations, become apparent when substituents are added. Many structural isomers of butadiene can be foiined (Structures VIII-XI), and the electrocylic ring-closure reaction to form cyclobutene can be phase inverting or preserving if the motion is conrotatory or disrotatory, respectively. The four cyclobutene structures XII-XV of cyclobutene may be formed by cyclization. Table I shows the different possibilities for the cyclization of the four isomers VIII-XI. These structmes are shown in Figure 35. [Pg.369]

Display the HOMO for cis-l,3,5-hexatriene. Which motion (conrotatory or disrotatory) insures bonding overlap Examine the geometry of the transition state for ring closure (hexatriene to cyclohexadiene). Is it consistent with the anticipated (conrotatory or disrotatory) motion of the terminal methylenes ... [Pg.272]

The ring closure of a diene to a cyclobutene can occur with rotation of the two termini in the same conrotatory) or opposite disrotatory) directions. For suitable substituted compounds, these two reaction modes lead to products with different stereochemistry. [Pg.360]

Figure 15.23 State correlation diagram for the dis- and conrotatory ring-closure of butadiene... Figure 15.23 State correlation diagram for the dis- and conrotatory ring-closure of butadiene...
Upon treatment of a divinyl ketone 1 with a protic acid or a Lewis acid, an electrocyclic ring closure can take place to yield a cyclopentenone 3. This reaction is called the Nazarov cyclization Protonation at the carbonyl oxygen of the divinyl ketone 1 leads to formation of a hydroxypentadienyl cation 2, which can undergo a thermally allowed, conrotatory electrocyclic ring closure reaction to give a cyclopentenyl cation 4. Through subsequent loss of a proton a mixture of isomeric cyclopentenones 5 and 6 is obtained ... [Pg.207]

Conrotatory (Section 30.2) A term used to indicate that p orbitals must rotate in the same direction during electro-cyclic ring-opening or ring closure. [Pg.1238]

As in the photolysis of protonated eucarvone, an acyclic intermediate is proposed in the mechanistic pathway. The protonated dienones 73 and 74 should be thermally stable, since a symmetry-allowed ring closure in the conrotatory mode is precluded in the cyclic system (Woodward and Hoffmann, 1970). Upon irradiation it can undergo a conrotatory ring opening however, to produce the acyclic cations 79 and 80 which in... [Pg.144]

The nucleophilic attack with 2-700 and 2-701 can proceed in a syn or anti manner to provide either 2-702 or 2-703, or both [357]. If2-703 is formed, it follows a charge-driven conrotatory opening of the cyclobutene ring with generation of the coiled 1,3,5,7-octatetraene 2-704. This intermediate is capable of a rapid helical equilibration [357] and a regioselective 8jt electrocyclic ring closure to give 2-705 [358]. [Pg.155]

The thermal ring-closure of butadienes to cyclobutenes proceeds in a conrotatory fashion (equation 2) but this reaction is only observed in special cases because, in general, the equilibrium lies on the side of the open-chain isomer. [Pg.508]

The acid-catalysed ring-closure of divinyl ketones to cyclopentenones (equation 6), the Nazarov reaction6-8, represents a conrotatory electrocyclization of 4jr-cyclopentadienyl cations. The conrotatory course of the reaction was confirmed for the case of the dicyclo-hexenyl ketone 7, which yielded solely the tricyclic ketone 8 on treatment with phosphoric acid (equation 7)3b. Cycloalkanocyclopentenones 10 with c/s-fused rings are obtained from the trimethylsilyl-substituted ketones 9 (n = 1, 2 or 3) and iron(III) chloride and... [Pg.508]

The two-step Staudinger reaction has been investigated in depth and 13-azadienes 56 have been isolated in some cases. The evidence suggests that the enol ether group is crucial in the stabilization of the diene and also plays an important role in promoting the conrotatory ring closure process . [Pg.77]

Tius and co-workers investigated a number of cationic cyclopentannelations of allenyl ethers [113] and found that 1-lithio-l-alkoxyallenes 180 react with a,/3-unsatu-rated carbonyl compounds 181 leading to highly functionalized cyclopentenones 182 (Scheme 8.44). The primary products are a-allenyl ketones 183, which form pentadienyl cations 184 by protonation. The latter undergo a thermally allowed 4jt-conrotatory ring closure to intermediates 185, which with elimination of R1 finally lead to the expected products 182 (Scheme 8.45). [Pg.455]

In the simple four-electron systems, a route for cis-trans isomerisation of a diene is made available by the photochemical reaction usually being a disrotatory ring closure and the thermal reaction being a conrotatory ring opening ... [Pg.153]

The first electrocyclic ring closure involves eight electrons, so it is conrotatory under thermal conditions, and the two hydrogen atoms at the terminus of the tetraene, which are both in, become trans. The second electrocyclic ring closure involves six electrons, so it is disrotatory under thermal conditions, and the two hydrogen atoms at the terminus of the triene, which are both out, become cis. This is the arrangement observed in the natural product. [Pg.90]

The HOMO of the pentadienyl cation is j/, which is antisymmetric, so a conrotatory ring closure occurs, consistent with the four electrons involved in this reaction. The HOMO of the pentadienyl anion is /2, which is symmetric, so a disrotatory ring closure occurs, consistent with the six electrons involved in this reaction. [Pg.90]


See other pages where Ring closure conrotatory is mentioned: [Pg.1201]    [Pg.1201]    [Pg.295]    [Pg.42]    [Pg.531]    [Pg.1201]    [Pg.1201]    [Pg.295]    [Pg.42]    [Pg.531]    [Pg.388]    [Pg.197]    [Pg.416]    [Pg.180]    [Pg.272]    [Pg.1184]    [Pg.160]    [Pg.1430]    [Pg.247]    [Pg.27]    [Pg.247]    [Pg.451]    [Pg.451]    [Pg.475]    [Pg.494]    [Pg.268]    [Pg.967]    [Pg.634]    [Pg.69]    [Pg.214]   
See also in sourсe #XX -- [ Pg.342 ]

See also in sourсe #XX -- [ Pg.342 ]

See also in sourсe #XX -- [ Pg.342 ]




SEARCH



Conrotatory

Conrotatory ring

Conrotatory ring closure principle

Electrocyclic ring-closure conrotatory

© 2024 chempedia.info