Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium -stabilized carbene complexe

Herrmann et al. reported for the first time in 1996 the use of chiral NHC complexes in asymmetric hydrosilylation [12]. An achiral version of this reaction with diaminocarbene rhodium complexes was previously reported by Lappert et al. in 1984 [40]. The Rh(I) complexes 53a-b were obtained in 71-79% yield by reaction of the free chiral carbene with 0.5 equiv of [Rh(cod)Cl]2 in THF (Scheme 30). The carbene was not isolated but generated in solution by deprotonation of the corresponding imidazolium salt by sodium hydride in liquid ammonia and THF at - 33 °C. The rhodium complexes 53 are stable in air both as a solid and in solution, and their thermal stability is also remarkable. The hydrosilylation of acetophenone in the presence of 1% mol of catalyst 53b gave almost quantitative conversions and optical inductions up to 32%. These complexes are active in hydrosilylation without an induction period even at low temperatures (- 34 °C). The optical induction is clearly temperature-dependent it decreases at higher temperatures. No significant solvent dependence could be observed. In spite of moderate ee values, this first report on asymmetric hydrosilylation demonstrated the advantage of such rhodium carbene complexes in terms of stability. No dissociation of the ligand was observed in the course of the reaction. [Pg.210]

An understanding of the mechanism [10] for rhodium-mediated intramolecular C-H insertion begins with the recognition that these a-diazo carbonyl derivatives can also be seen as stabilized ylides, such as 15 (Scheme 16.4). The catalytic rhodium(II) car-boxylate 16 is Lewis acidic, with vacant coordination sites at the apical positions, as shown. The first step in the mechanism, carbene transfer from the diazo ester to the rhodium, begins with complexation of the electron density at the diazo carbon with an open rhodium coordination site, to give 17. Back-donation of electron density from the proximal rhodium to the carbene carbon, with concomitant loss of N2, then gives the intermediate rhodium carbene complex 18. [Pg.358]

Diazo compounds, with or without metal catalysis, are well-known sources of carbenes. For synthetic purposes a metal catalyst is used. The diazo compounds employed are usually a- to an electron-withdrawing group, such as an ester or a ketone, for stability. In the early days, copper powder was the catalyst of choice, but now salts of rhodium are favoured. The chemistry that results looks very like the chemistry of free carbenes, involving cyclopropanation of alkenes, cyclopropenation of alkynes, C-H insertion reactions and nucleophilic trapping. As with other reactions in this chapter, free carbenes are not involved. Rhodium-carbene complexes are responsible for the chemistry. This has enormous consequences for the synthetic applications of the carbenes - not only does the metal tame the ferocity of the carbene, but it also allows control of the chemo-, regio- and stereoselectivity of the reaction by the choice of ligands. [Pg.312]

Carbene complexes, generated by the reaction between metal salts and diazo compounds can insert into C-H bonds in a form of CH activation (see Chapter 3 for other CH activation reactions). While early reactions involved the use of copper salts as catalysts (Schemes 8.143 and 8.144), rhodium complexes are now more widely used. In molecules such as cyclohexane, there is no issue of regioselectivity, but this issue is critical for the use of the reaction in synthesis. Both steric and electronic factors influence selectivity. Carbon atoms where a build up of some positive charge can be stabilized are favoured. Hence, allylic positions and positions a- to a heteroatom such as oxygen or nitrogen, are favoured. The reaction at tertiary C-H bonds, rather than primary C-H bonds is also favoured for the same reason, but, in this case, are also disfavoured by steric effects. Reactivity and selectivity are also influenced by both the structure of the catalyst, and the... [Pg.315]

Two non-NHC-bearing Rh(III) complexes depicted below were likewise tested in the hydroformylation of 1-hexene (CO/H2 = 1 1, 20 bar, 90 C, toluene, 3 h) [66]. Under these conditions, neither developed any hydroformylation activity, apparently because of the high stability of the rhodium(III)-carbene species. In order to reduce Rh(III) to Rh(I), metallic zinc was added, which significantly improved conversion of the olefin in favor of the aldehyde (85-91%). Indeed, and NMR experiments provided evidence that actually the metal(III) ion was reduced however, under these conditions the carbene was replaced by CO and results must be attributed to the catalytic effect of RhCl(CO)(PPh3)2-... [Pg.256]

Carbonyl ylides can be viewed as an adduct between a carbonyl group and a carbene and, in fact, some ylides have been prepared this way (see above). The application of carbonyl ylides to the synthesis of complex natural products has been greatly advanced by the finding that stabilized carbenoids can be generated by the decomposition of ot-diazocarbonyl compounds with copper and rhodium complexes. The metallocarbenoids formed by this method are highly electrophilic on carbon and readily add nucleophiles such as the oxygen of many carbonyl derivatives to form carbonyl ylides. This type of reaction is in fact quite old with the first report being the addition of diazomalonate and benzaldehyde (33,34). [Pg.269]


See other pages where Rhodium -stabilized carbene complexe is mentioned: [Pg.131]    [Pg.216]    [Pg.182]    [Pg.4098]    [Pg.68]    [Pg.4097]    [Pg.195]    [Pg.25]    [Pg.236]    [Pg.54]    [Pg.340]    [Pg.491]    [Pg.1]    [Pg.14]    [Pg.262]    [Pg.43]    [Pg.244]    [Pg.16]    [Pg.35]    [Pg.44]   
See also in sourсe #XX -- [ Pg.216 ]




SEARCH



Carbene stability

Complex Stabilization

Complexation stabilization

Rhodium carbene

Rhodium carbene complexes

Rhodium carbenes

Stability complexes

© 2024 chempedia.info