Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones rhodium

Some examples of the use of a temporary additional site of coordination have been published. Burk and Feaster have transformed a series of ketones into hydrazones capable of chelating to a rhodium catalyst (Scheme 4.7). Upon coordination, enanti os elective hydrogenation of the hydrazone is feasible, yielding N-aroylhydrazines in up to 97% ee. Finally, the hydrazines were transformed into amines by treatment with Sml2. [Pg.112]

Efficient enantioselective asymmetric hydrogenation of prochiral ketones and olefins has been accompHshed under mild reaction conditions at low (0.01— 0.001 mol %) catalyst concentrations using rhodium catalysts containing chiral ligands (140,141). Practical synthesis of several optically active natural... [Pg.180]

Historically, isobutyl alcohol was an unwanted by-product of the propylene Oxo reaction. Indeed, isobutyraldehyde the precursor of isobutyl alcohol was occasionally burned for fuel. However, more recentiy isobutyl alcohol has replaced -butyl alcohol in some appHcations where the branched alcohol appears to have preferred properties and stmcture. However, suppHes of isobutyl alcohol have declined relative to overall C-4 alcohols, especially in Europe, with the conversion of many Oxo plants to rhodium based processes which give higher normal to isobutyraldehyde isomer ratios. Further the supply of isobutyl alcohol at any given time can fluctuate greatly, since it is the lowest valued derivative of isobutyraldehyde, after neopentyl glycol, methyl isoamyl ketone and certain condensation products (10). [Pg.358]

With Unsaturated Compounds. The reaction of unsaturated organic compounds with carbon monoxide and molecules containing an active hydrogen atom leads to a variety of interesting organic products. The hydroformylation reaction is the most important member of this class of reactions. When the hydroformylation reaction of ethylene takes place in an aqueous medium, diethyl ketone [96-22-0] is obtained as the principal product instead of propionaldehyde [123-38-6] (59). Ethylene, carbon monoxide, and water also yield propionic acid [79-09-4] under mild conditions (448—468 K and 3—7 MPa or 30—70 atm) using cobalt or rhodium catalysts containing bromide or iodide (60,61). [Pg.52]

The reduction of keto steroids by treatment with chloroiridic acid, or sodium chloroiridate, and trimethyl phosphite has been studied in some detail.Ketones at the 2- and 3-positions are reduced predominantly to the corresponding axial alcohols, while ketones at 4,6,7,11,12,17 and 20 are not affected. The rate of reaction is increased by addition of aqueous sodium hydroxide. Replacement of sodium chloroiridate by tris(triphenylphos-phine)rhodium chloride gives a system which reduces a 3-keto steroid to the... [Pg.91]

The direct formation of a dimethyl ketal by reaction of the ketone with methanol is particularly sensitive to steric effects. Only cyclohexanones react under these conditions.In the steroid series only saturated 3-ketones form dimethyl ketals with methanol and acid although partial reaction of a 2-ketone has been observed in the presence of homogenous rhodium catalyst. ... [Pg.378]

The dimethyl ketal function (51) is one of the most suitable base stable protecting groups for saturated 5a- and 5/i-3-ketones. It is formed by reaction of the ketone (50) with methanol in the presence of a suitable catalyst. Good selectivity can also be achieved with this group since 2-, 6-, 11-, 12-, 17- and 20-ketones do not form dimethyl ketals under these conditions. The 2-ketone is converted in part to the dimethyl ketal in the presence of homogeneous rhodium catalyst. "" y -Toluenesulfonic acid is the catalyst of... [Pg.388]

Plaiinum was more efficient lhan rhodium in ihese experimenis. These catalysts give excellent yields of tertiary amines in reductive alkylation of aliphatic secondary amines with ketones ( 6). [Pg.83]

The benzylic position of an alkylbcnzene can be brominated by reaction with jV-bromosuccinimide, and the entire side chain can be degraded to a carboxyl group by oxidation with aqueous KMnCfy Although aromatic rings are less reactive than isolated alkene double bonds, they can be reduced to cyclohexanes by hydrogenation over a platinum or rhodium catalyst. In addition, aryl alkyl ketones are reduced to alkylbenzenes by hydrogenation over a platinum catalyst. [Pg.587]

Asymmetric hydrogenolysis of epoxides has received relatively little attention despite the utility such processes might hold for the preparation of chiral secondary alcohol products. Chan et al. showed that epoxysuccinate disodium salt was reduced by use of a rhodium norbornadiene catalyst in methanol/water at room temperature to give the corresponding secondary alcohol in 62% ee (Scheme 7.31) [58]. Reduction with D2 afforded a labeled product consistent with direct epoxide C-O bond cleavage and no isomerization to the ketone or enol before reduction. [Pg.249]

A neat mixture of the /l-unsaturated ketone (10mmol), triethylsilane (11 mmol), and tris(triphenylphosphine)rhodium(i) chloride (0.01 mmol) was stirred at 50°C for 2h, and the product silyl enol ether was distilled directly (yields 90-98%). [Pg.62]

Vinyl boranes add to conjugated ketones in the presence of a rhodium catalyst (with high asymmetric induction in the presence of BINAP) 7 Alkynyl-boranes also add to conjugated ketones, in the presence of... [Pg.1032]

Similar reactions have been carried out on acetylene. Aldehydes add to alkynes in the presence of a rhodium catalyst to give conjugated ketones. In a cyclic version of the addition of aldehydes, 4-pentenal was converted to cyclopen-tanone with a rhodium-complex catalyst. In the presence of a palladium catalyst, a tosylamide group added to an alkene unit to generate A-tosylpyrrolidine derivatives. ... [Pg.1034]

In the presence of metal catalysts such as rhodium compounds, aldehydes can add directly to alkenes to form ketones. The reaction of co-alkenyl aldehydes with rhodium catalyst leads to cyclic ketones, with high enantioselectivity if chiral ligands are employed. Aldehydes also add to vinyl esters in the presence of hyponitrites and thioglycolates. ° ... [Pg.1038]

Probably the first non-covalent immobilization of a chiral complex with diazaligands was the adsorption of a rhodium-diphenylethylenediamine complex on different supports [71]. These solids were used for the hydride-transfer reduction of prochiral ketones (Scheme 2) in a continuous flow reactor. The inorganic support plays a crucial role. The chiral complex was easily... [Pg.183]

Chiral diamino carbene complexes of rhodium have been merely used in asymmetric hydrosilylations of prochiral ketones but also in asymmetric addition of aryl boron reagents to enones. [Pg.210]

Highly enantioselective hydrosilylation of aliphatic and aromatic carbonyl compounds such as acetophenone, methyl phenethyl ketone 1813, or deuterobenz-aldehyde 1815 can be readily achieved with stericaUy hindered silanes such as o-tolyl2SiH2 or phenyl mesityl silane 1810 in the presence of the rhodium-ferrocene catalyst 1811 to give alcohols such as 1812, 1814, and 1816 in high chemical and optical yield [47] (Scheme 12.14). More recently, hydrosilylations of aldehydes... [Pg.268]

Hydrogenation of substrates having a polar multiple C-heteroatom bond such as ketones or aldehydes has attracted significant attention because the alcohols obtained by this hydrogenation are important building blocks. Usually ruthenium, rhodium, and iridium catalysts are used in these reactions [32-36]. Nowadays, it is expected that an iron catalyst is becoming an alternative material to these precious-metal catalysts. [Pg.35]


See other pages where Ketones rhodium is mentioned: [Pg.77]    [Pg.77]    [Pg.46]    [Pg.133]    [Pg.181]    [Pg.292]    [Pg.200]    [Pg.74]    [Pg.99]    [Pg.101]    [Pg.324]    [Pg.279]    [Pg.567]    [Pg.801]    [Pg.1016]    [Pg.1035]    [Pg.1037]    [Pg.1443]    [Pg.1453]    [Pg.11]    [Pg.35]    [Pg.295]    [Pg.29]    [Pg.106]    [Pg.212]    [Pg.213]    [Pg.214]    [Pg.286]    [Pg.29]    [Pg.259]   
See also in sourсe #XX -- [ Pg.107 , Pg.110 , Pg.119 , Pg.191 ]




SEARCH



Ketones and Esters as Nucleophiles for Rhodium-Catalyzed Allylic Alkylation

Ketones catalysis, rhodium complexes

Ketones catalysts, rhodium complexes

Ketones chlorotris rhodium

Ketones diazo, reaction with rhodium

Ketones hydrosilylations, chlorotris rhodium

Ketones rhodium catalysis

Ketones rhodium-catalyzed carbenoid reactions

Platinum-rhodium oxide, hydrogenation ketones

Rhodium catalysts for asymmetric ketone reduction

Rhodium catalysts hydrogenation, ketones

Rhodium catalytic compounds ketone derivation

Rhodium ketone arylation

Rhodium ketones, stereoselective

Rhodium methyl ketone synthesis

Rhodium-Catalyzed Enantioselective Hydrogenation of Functionalized Ketones

Tris rhodium chloride ketones

© 2024 chempedia.info