Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium compounds, catalysis

Recently, it has been discovered that catalysis by rhodium compounds is more effective than by the older cobalt catalyst when tris(triphenylphosphine)rhodium chloride is treated with carbon monoxide, the catalyst bis(triphenylphosphine)rhodium carbonyl chloride is formed. This catalyst is very effective under very mild conditions (49-51). It is believed that the tr-ir rearrangement is also important with this catalyst and operates in a manner analogous to that in the cobalt-catalyzed process, since stablization of the cr complex has been shown to lead to olefin isomerization and lower linear selectivity (52). [Pg.245]

Although the homogeneous catalyst systems have been successfully applied in commercial practice, some intrinsic problems associated with catalyst separation remain. This has led to considerable interest in the development of a suitable heterogeneous analog. Rhodium compounds have been heterogenenized on substrates such as carbon (197), alumina (198, 199), and synthetic polymers (200). More recently, zeolites have also attracted quite some attention as a support material for carbonylation catalysis, as is discussed later. [Pg.40]

An important modern example of homogeneous catalysis is provided by the Monsanto process in which the rhodium compound 1.4 catalyses a reaction, resulting in the addition of carbon monoxide to methanol to form ethanoic acid (acetic acid). Another well-known process is hydro-formylation, in which the reaction of carbon monoxide and hydrogen with an alkene, RCH=CH2, forms an aldehyde, RCH2CH2CHO. Certain cobalt or rhodium compounds are effective catalysts for this reaction. In addition to catalytic applications, non-catalytic stoichiometric reactions of transition elements now play a major role in the production of fine organic chemicals and pharmaceuticals. [Pg.15]

As the first transition metal-based homogeneous catalysis of hydroamination, in the early 1970s Coulson from the Du Pont laboratories had described the addition of secondary aliphatic amines to ethylene in the presence of various rhodium compounds [15, 16]. Definite results were reported with RhCl3 3 H2O as pre-catalyst in tetrahydrofuran as solvent under starting ethylene pressures of 5-14 MPa at 180-200 °C for different secondary amines (Table 3). [Pg.522]

Tin.—Allyltin compounds, especially under rhodium-complex catalysis, react with acyl chlorides to give allyl ketones or with aryl halides to give allylarenes. Bridgehead alkyl bromides are reduced on photolysis with Bu"3SnH, whilst the system (Bu"3Sn)20-Br2 oxidizes sulphides to sulphoxides. )V-(Alkoxycar-bonyl)amino-acids are obtained upon treatment of cyclic anhydrides with Bu3SnN3 and heating in an alcohol. ... [Pg.190]

The interpretation of the formation of the Ci3-lactone requires a sequence of mechanistical pathways which are unknown so far in rhodium-catalysis. Two proposals for the mechanism were given in Equation 12. The mechanism of path B is similar to that shown for palladium catalysis. A rhodium Cg-carboxylate complex is formed which under further incorporation of butadiene could yield the lactone. In the mechanism of path A three molecules of butadiene react with the starting rhodium compound forming a C- 2 Chain, which is bound to the rhodium by two n -ally1 systems and one olefinic double bond. Carbon dioxide inserts into one of the rhodium allyl bonds thus forming a C- 3-carboxyl ate complex, which yields the new C-13-lactone. [Pg.86]

R. S. Dickson, Homogeneous Catalysis with Compounds of Rhodium and Iridium, Reidel, Dordrecht, The Netherlands, 1985. [Pg.71]

Platinum, palladium, and rhodium will function well under milder conditions and are especially useful when other reducible functions are present. Freifelder (23) considers rhodium-ammonia the system of choice when reducing -amino nitriles and certain )5-cyano ethers, compounds that undergo extensive hydrogenolysis under conditions necessary for base-metal catalysis. [Pg.97]

Another metal that has attracted interest for use as electrode material is rhodium, inspired by its high activity in the catalytic oxidation of CO in automotive catalysis. It is found that Rh is a far less active catalyst for the ethanol electro-oxidation reaction than Pt [de Souza et al., 2002 Leung et al., 1989]. Similar to ethanol oxidation on Pt, the main reactions products were CO2, acetaldehyde, and acetic acid. Rh, however, presents a significant better CO2 yield relative to the C2 compounds than Pt, indicating a... [Pg.195]

Rhodium(II) acetate was found to be much more superior to copper catalysts in catalyzing reactions between thiophenes and diazoesters or diazoketones 246 K The outcome of the reaction depends on the particular diazo compound 246> With /-butyl diazoacetate, high-yield cydopropanation takes place, yielding 6-eco-substituted thiabicyclohexene 262. Dimethyl or diethyl diazomalonate, upon Rh2(OAc)4-catalysis at room temperature, furnish stable thiophenium bis(alkoxycarbonyl)methanides 263, but exclusively the corresponding carbene dimer upon heating. In contrast, only 2-thienylmalonate (36 %) and carbene dimer were obtained upon heating the reactants for 8 days in the presence of Cul P(OEt)3. The Rh(II)-promoted ylide formation... [Pg.183]

Rhodium complexes with chiral dithiolato and dithiother ligands have been studied in rhodium-catalyzed asymmetric hydroformylation. In all instances, enantioselectivities were low.391-393 Catalysis with compounds containing thiolate ligands has been reviewed.394... [Pg.176]

A set of core-functionalized dendrimers was synthesized by Van Leeuwen et al. and one compound was applied in continuous catalysis. [45] The dendritic dppf, Xantphos and triphenylphosphine derivatives (Figures 4.22, 4.30 and 4.31) were active in rhodium-catalyzed hydroformylation and hydrogenation reactions (performed batch-wise). Dendritic effects were observed which are discussed in paragraph 4.5. The dendritic rhodium-dppf complex was applied in a continuous hydrogenation reaction of dimethyl itaconate. [Pg.88]

R.S. Dickson Homogeneous Catalysis with Compounds of Rhodium and Iridium. [Pg.249]

Today, iridium compounds find so many varied applications in contemporary homogeneous catalysis it is difficult to recall that, until the late 1970s, rhodium was one of only two metals considered likely to serve as useful catalysts, at that time typically for hydrogenation or hydroformylation. Indeed, catalyst/solvent combinations such as [IrCl(PPh3)3]/MeOH, which were modeled directly on what was previously successful for rhodium, failed for iridium. Although iridium was still considered potentially to be useful, this was only for the demonstration of stoichiometric reactions related to proposed catalytic cycles. Iridium tends to form stronger metal-ligand bonds (e.g., Cp(CO)Rh-CO, 46 kcal mol-1 Cp(CO)Ir-CO, 57 kcal mol ), and consequently compounds which act as reactive intermediates for rhodium can sometimes be isolated in the case of iridium. [Pg.35]

Several copper, silver, ruthenium, rhodium, and cobalt compounds (e.g., Ru-Cl3 aq, [RuC h(l)ipy) (bipy=2,2 -bipyridine), RhCl3 aq, fotx(dimelbylglyoxima-to)cobalt derivatives (cobaloximes), etc.) have been found to catalyze hydrogenations in aqueous solutions [9]. Although important for the early research into homogeneous catalysis, these catalysts did not gain synthetic significance. [Pg.1334]

Optically active aldehydes are important precursors for biologically active compounds, and much effort has been applied to their asymmetric synthesis. Asymmetric hydroformylation has attracted much attention as a potential route to enantiomerically pure aldehyde because this method starts from inexpensive olefins and synthesis gas (CO/H2). Although rhodium-catalyzed hydrogenation has been one of the most important applications of homogeneous catalysis in industry, rhodium-mediated hydroformylation has also been extensively studied as a route to aldehydes. [Pg.384]


See other pages where Rhodium compounds, catalysis is mentioned: [Pg.12]    [Pg.149]    [Pg.686]    [Pg.686]    [Pg.275]    [Pg.237]    [Pg.345]    [Pg.489]    [Pg.176]    [Pg.171]    [Pg.151]    [Pg.567]    [Pg.8]    [Pg.12]    [Pg.31]    [Pg.182]    [Pg.290]    [Pg.100]    [Pg.270]    [Pg.105]    [Pg.553]    [Pg.556]    [Pg.569]    [Pg.113]    [Pg.65]    [Pg.33]    [Pg.38]    [Pg.384]    [Pg.815]    [Pg.1380]   


SEARCH



Catalysis compounds

Rhodium compounds

Rhodium compounds, catalysis hydroformylation

Rhodium compounds, catalysis insertion reactions

Rhodium compounds, catalysis intramolecular

© 2024 chempedia.info