Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium complexes transfer hydrogenation

Directed intramolecular transfer hydrogenations are catalyzed by rhodium complexes with the pendant alkene acting as an internal sacrificial olefin (Equation (39)). [Pg.115]

Water-soluble complexes constitute an important class of rhodium catalysts as they permit hydrogenation using either molecular hydrogen or transfer hydrogenation with formic acid or propan-2-ol. The advantages of these catalysts are that they combine high reactivity and selectivity with an ability to perform the reactions in a biphasic system. This allows the product to be kept separate from the catalyst and allows for an ease of work-up and cost-effective catalyst recycling. The water-soluble Rh-TPPTS catalysts can easily be prepared in situ from the reaction of [RhCl(COD)]2 with the sulfonated phosphine (Fig. 15.4) in water [17]. [Pg.419]

Whatever the route to a rhodium dihydride alkene complex, the hydrogen must be transferred sequentially to the double bond. It had always been assumed that the first C-H bond is formed / to the amido-group, so that the more stable Rh-substrate chelate is formed. This is the alkylhydride isomer observed in stoichiometric NMR studies at low temperatures, and is supported by studies under catalytic turnover conditions, assuming a normal isotope effect... [Pg.1079]

Rhodium diphosphine catalysts can be easily prepared from [Rh(nbd)Cl]2 and a chiral diphosphine, and are suitable for the hydrogenation of imines and N-acyl hydrazones. However, with most imine substrates they exhibit lower activities than the analogous Ir catalysts. The most selective diphosphine ligand is bdppsuif, which is not easily available. Rh-duphos is very selective for the hydrogenation of N-acyl hydrazones and with TOFs up to 1000 h-1 would be active enough for a technical application. Rh-josiphos complexes are the catalysts of choice for the hydrogenation of phosphinyl imines. Recently developed (penta-methylcyclopentyl) Rh-tosylated diamine or amino alcohol complexes are active for the transfer hydrogenation for a variety of C = N functions, and can be an attractive alternative for specific applications. [Pg.1211]

Brunner, Leitner and others have reported the enantioselective transfer hydrogenation of alpha-, beta-unsaturated alkenes of the acrylate type [50]. The catalysts are usually rhodium phosphine-based and the reductant is formic acid or salts. The rates of reduction of alkenes using rhodium and iridium diamine complexes is modest [87]. An example of this reaction is shown in Figure 35.8. Williams has shown the transfer hydrogenation of alkenes such as indene and styrene using IPA [88]. [Pg.1235]

BINAP has been extensively used for the asymmetric hydrogenation, transfer hydrogenation and isomerisation of double bonds using both ruthenium and rhodium complexes. [Pg.103]

While this manuscript was under preparation, a considerable number of examples of sohd-phase-attached catalysts appeared in the literature which is a clear indication for the dynamic character of this field. These include catalysts based on palladium [131, 132], nickel [133] and rhodium [134] as well applications in hydrogenations including transfer hydrogenations [135, 136] and oxidations [137]. In addition various articles have appeared that are dedicated to immobilized chiral h-gands for asymmetric synthesis such as chiral binol [138], salen [139], and bisoxa-zoline [140] cinchona alkaloid derived [141] complexes. [Pg.234]

The treatment of [Cp MCl2]2 (M = Rh and Ir) with (S,S)-TsDPEN gave chiral Cp Rh and Cp Ir complexes (12a and 12b Scheme 5.9). An asymmetric transfer hydrogenation of aromatic ketones using complex 12 was carried out in 2-propanol in the presence of aqueous KOH (1 equiv.) the results obtained are summarized in Table 5.4. In all of the reactions, the (S)-alcohols were obtained with more than 80% enantiomeric excess (ee) and in moderate to excellent yields. The rhodium catalyst 12a was shown to be considerably more active than the iridium catalyst... [Pg.114]

The first use of a metal catalyst in the DKR of secondary alcohols was reported by Williams et al. [7]. In this work, various rhodium, iridium, ruthenium and aluminum complexes were tested. Among them, only Rh2(OAc)4 and [Rh(cod)Cl]2 showed reasonable activity as the racemization catalyst in the DKR of 1-phenylethanol. The racemization occurred through transfer-hydrogenation reactions and required stoichiometric amounts of ketone as hydrogen acceptor. The DKR of 1-phenylethanol performed with Rh2(OAc)4 and Pseudomonas Jluore-scens lipase gave (R)-l-phenylethyl acetate of 98%e.e. at 60% conversion after 72 h. [Pg.8]

The inefficiency of the platinum/hydrogen reduction system and the dangers involved with the combination of molecular oxygen and molecular hydrogen led to a search for alternatives for the reduction of the manganese porphyrin. It was, for example, found that a rhodium complex in combination with formate ions could be used as a reductant and, at the same time, as a phase-transfer catalyst in a biphasic system, with the formate ions dissolved in the aqueous layer and the manganese porphyrin and the alkene substrate in the organic layer [28]. [Pg.154]

Choukroun, R.. Iraqi, A.. Gervais, D., Daran, f.C. and Jeannin, Y. (1987) A semibridging hydrido zirconium-rhodium complex A possible way to catalytic hydrogen transfer on do-de systems. Organometallics. 6. 1197-1201. [Pg.296]

Anomalous concentration dependence observed in the asymmetric transfer hydrogenation of imines with formic acid, catalysed by chiral rhodium-diamine complexes, has been attributed to the participation of both reactant and product in the formation of formate salt. The probable resting state of the catalyst is a rhodium hydride species.373... [Pg.141]


See other pages where Rhodium complexes transfer hydrogenation is mentioned: [Pg.201]    [Pg.7208]    [Pg.88]    [Pg.105]    [Pg.313]    [Pg.121]    [Pg.151]    [Pg.271]    [Pg.76]    [Pg.347]    [Pg.113]    [Pg.116]    [Pg.172]    [Pg.477]    [Pg.120]    [Pg.175]    [Pg.405]    [Pg.425]    [Pg.586]    [Pg.590]    [Pg.1216]    [Pg.1217]    [Pg.1372]    [Pg.473]    [Pg.85]    [Pg.90]    [Pg.72]    [Pg.84]    [Pg.55]    [Pg.96]    [Pg.36]    [Pg.50]    [Pg.89]    [Pg.227]    [Pg.498]    [Pg.39]    [Pg.40]    [Pg.115]   
See also in sourсe #XX -- [ Pg.156 ]




SEARCH



Hydrogen atom transfer from rhodium complexes

Hydrogen complexes

Hydrogenation complexes

Rhodium transfer hydrogenation

© 2024 chempedia.info