Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium complex-catalyzed carbonylation iodide salts

One approach that enables the use of lower water concentrations for rhodium-complex-catalyzed methanol carbonylation is the addition of iodide salts, as exemplified by the Celanese Acid Optimization (AO Plus) technology [11,33]. A lithium iodide promoter allows carbonylation rates to be achieved that are comparable with those in the conventional Monsanto process—but at significantly lower water concentrations. The AO technology has been implemented to increase productivity at the Celanese facility in Clear Lake, Texas, and in a new 500 kt/a plant in Singapore. [Pg.9]

It has been found that iodide salts can promote the oxidative addition of Mel to [Rh(CO)2I2], the rate-determining step in the cycle of the rhodium-complex-catalyzed methanol carbonylation reaction [20]. [Pg.9]

A process for the coproduction of acetic anhydride and acetic acid, which has been operated by BP Chemicals since 1988, uses a quaternary ammonium iodide salt in a role similar to that of Lil [8]. Beneficial effects on rhodium-complex-catalyzed methanol carbonylation have also been found for other additives. For example, phosphine oxides such as Ph3PO enable high catalyst rates at low water concentrations without compromising catalyst stability [40—42]. Similarly, iodocarbonyl complexes of ruthenium and osmium (as used to promote iridium systems, Section 3) are found to enhance the activity of a rhodium catalyst at low water concentrations [43,44]. Other compounds reported to have beneficial effects include phosphate salts [45], transition metal halide salts [46], and oxoacids and heteropolyacids and their salts [47]. [Pg.10]

Rhodium-catalyzed carbonylation of methanol is known as the Monsanto process, which has been studied extensively. From the reaction mechanism aspect, the study of kinetics has proved that the oxidative addition of methyl iodide to the [Rh(CO)2l2] is the rate-determining step of the catalytic cycle. It was also observed that acetyl iodide readily adds to [Rh(CO)2l2], indicating that the acetyl iodide must be scavenged by hydrolysis in order to drive the overall catalytic reaction forward. An alternative to sequential reductive elimination and the hydrolysis of acetyl iodide is the nucleophilic attack of water on the Rh acetyl complex and the production of acetic acid. The relative importance of these two alternative pathways has not yet been fully determined, although the catalytic mechanism is normally depicted as proceeding via the reductive elimination of acetyl iodide from the rhodium center. The addition of iodide salts, especially lithium iodide, can realize the reaction run at lower water concentrations thus, byproduct formation via the water gas shift reaction is reduced, subsequently improving raw materials consumption and reducing downstream separation. In addition to the experimental studies of the catalytic mechanism, theoretical studies have also been carried out to understand the reaction mechanism [17-20]. [Pg.14]


See other pages where Rhodium complex-catalyzed carbonylation iodide salts is mentioned: [Pg.147]    [Pg.257]   


SEARCH



Carbonyl iodides

Carbonylation catalyzed

Carbonylation rhodium-catalyzed

Catalyzed Carbonylations

Complex salts

Complexes iodide

Iodides carbonylation

Rhodium carbonyl complexes

Rhodium carbonylation

Rhodium carbonyls

Rhodium complex-catalyzed carbonylation

Rhodium complexes catalyzed

Rhodium iodide

Rhodium salts

Rhodium-catalyzed

Salt complexation

© 2024 chempedia.info