Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium catalysts transition metal carbon-hydrogen

All of these reactions involve transition metals such as palladium, copper, and ruthenium, usually in complex with certain types of ligands. After we see the practical applications of these reactions for carbon—carbon bond formation, we shall consider some general aspects of transition metal complex structure and representative steps in the mechanisms of transition metal—catalyzed reactions. We shall consider as specific examples the mechanism for a transition metal—catalyzed hydrogenation using a rhodium complex called Wilkinsons catalyst, and the mechanism for the Heck—Mizoroki reaction. [Pg.1242]

The most widely used method for adding the elements of hydrogen to carbon-carbon double bonds is catalytic hydrogenation. Except for very sterically hindered alkenes, this reaction usually proceeds rapidly and cleanly. The most common catalysts are various forms of transition metals, particularly platinum, palladium, rhodium, ruthenium, and nickel. Both the metals as finely dispersed solids or adsorbed on inert supports such as carbon or alumina (heterogeneous catalysts) and certain soluble complexes of these metals (homogeneous catalysts) exhibit catalytic activity. Depending upon conditions and catalyst, other functional groups are also subject to reduction under these conditions. [Pg.368]

This chapter describes, from an historic perspective, the development of ligands and catalysts for enantioselective hydrogenations of alkenes. There is no in-depth discussion of the many ligands available as the following chapters describe many of these, as well as their specific applications. The purpose here is to provide an overall summary and perspective of the area. By necessity, a large number of catalyst systems have not been mentioned. The discussion is also limited to the reductions of carbon-carbon unsaturation. In almost all cases, rhodium is the transition metal to catalyze this type of reduction. In order to help the reader, the year of the first publication in a journal has been included in parentheses under each structure. [Pg.745]

The history of homogeneous hydrogenation with a transition metal catalyst really started in 1966 with the development of Wilkinson s catalyst (Figure 9.2). This rhodium complex was the first that allowed the controlled reduction of unsaturated carbon-carbon bonds under mild conditions [3]. [Pg.360]

Besides solid transition metals, certain soluble transition-metal complexes are active hydrogenation catalysts.4. The most commonly used example is tris(triphenylphosphine)-chlororhodium, which is known as Wilkinson s catalyst.5 This and related homogeneous catalysts usually minimize exchange and isomerization processes. Hydrogenation by homogeneous catalysts is believed to take place by initial formation of a rc-complex, followed by transfer of hydrogen from rhodium to carbon. [Pg.253]

The hydrocarboxylation reaction of alkenes and alkynes is one which utilizes carbon monoxide to produce carboxylic acid derivatives. The source of hydrogen is a protic solvent (equation 35) dihydrogen is not usually added to the reaction. There are a number of variations to this reaction, since the solvent can be water, alcohols, amines, acids, etc. The catalysts can be Group VIII-X transition metals, but cobalt, rhodium, nickel, palladium and platinum have found the most use. [Pg.932]

Kumada et al. have examined a number of chiral ferrocenylphosphines as ligands for asymmetric reactions catalyzed by transition metals. They are of interest because they contain a planar element of chirality as well as an asymmetric carbon atom. They were first used in combination with rhodium catalysts for asymmetric hydrosilylation of ketones with di- and trialkylsilanes in moderate optical yields (5-50%). High stereoselectivity was observed in the hydrogenation of a-acetamidoacrylic acids (equation 1) with rhodium catalysts and ferrocenylphosphines. ... [Pg.105]

Example 5.2. Hydroformylation of propene [2]. Hydroformylation converts an olefin to an aldehyde of next higher carbon number by addition of carbon monoxide and hydrogen. The reaction is catalyzed by dissolved hydrocarbonyl complexes of transition-metal ions such as cobalt, rhodium, or rhenium. The carbon atom of the carbon monoxide can attach itself to the carbon atom on either side of the olefinic double bond, so that two aldehyde isomers are formed. If the catalyst also has hydrogenation activity, the aldehydes are converted to alcohols and paraffin is formed as by-product. For propene and such a catalyst the (simplified) network is ... [Pg.89]

The preparation of N-phenylhydroxylamine in high yields from nitrobenzene under catalytic transfer hydrogenation conditions is also possible utilizing wet 5% rhodium on carbon and hydrazine hydrate. Unfortunately, the transition metal catalysts tend to be expensive and the high temperatures required can be detrimental, particularly when the resulting hydroxylamines are explosive in nature. ... [Pg.366]

Alkenes can be hydroformylated " by treatment with carbon monoxide and hydrogen over a catalyst. The most common catalysts are cobalt carbonyls (see below for a description of the mechanism) and rhodium complexes, " but other transition metal compounds have also been used. Cobalt catalysts are less active than the rhodium type, and catalysts of other metals are generally less active. " Commercially, this is called the 0x0 process, but it can be carried out in the laboratory in an ordinary hydrogenation apparatus. The order of reactivity is straight-chain terminal alkenes > straight-chain internal alkenes > branched-chain alkenes. With terminal alkenes, for example, the aldehyde unit is formed on both the primary and secondary carbon, but proper choice of catalyst and additive leads to selectivity for the secondary product " or primary... [Pg.1145]

A few reactions in which four components are reacted together in the presence of a transition metal cluster as the catalyst are known. These reactions involve an acetylene, an olefin, carbon monoxide and hydrogen, or a hydrogen donor and are catalyzed by the rhodium cluster Rh4(CO)i2. In a typical experiment, an acetone solution of diphenylacetylene is pressurized with ethylene (25 bar), CO (30 bar), and H2 (5 bar) at 150°C for 6 hr the reaction... [Pg.94]

It has been known for many years that transition metals catalyze reactions of coordinated phosphines (2). Known reactions of phosphines as ligands include carbon-hydrogen lx)nd cleavage (cyclometalation), as well as direct carbon-phosphorus bond cleavage. Such metal-catalyzed reactions of phosphines lead to formation of new metal complexes which can affect catalyst properties. A known example is the reaction of triphenylphosphine to propyldiphenylphosphine during the rhodium-catalyzed propylene hydrogenation or hydroformylation (5). [Pg.229]

Hydrocarboxylation is the formal addition of hydrogen and a carboxylic group to double or triple bonds to form carboxylic acids or their derivatives. It is achieved by transition metal catalyzed conversion of unsaturated substrates with carbon monoxide in the presence of water, alcohols, or other acidic reagents. Ester formation is also called hydroesterification or hydrocarb(o)alkoxylation . The transition metal catalyst precursors are nickel, iron or cobalt carbonyls or salts of nickel, iron, cobalt, rhodium, palladium, platinum, or other metals4 5. [Pg.372]


See other pages where Rhodium catalysts transition metal carbon-hydrogen is mentioned: [Pg.127]    [Pg.1037]    [Pg.109]    [Pg.80]    [Pg.374]    [Pg.76]    [Pg.75]    [Pg.127]    [Pg.815]    [Pg.96]    [Pg.74]    [Pg.491]    [Pg.65]    [Pg.480]    [Pg.337]    [Pg.73]    [Pg.771]    [Pg.810]    [Pg.303]    [Pg.593]    [Pg.447]    [Pg.346]    [Pg.478]    [Pg.436]    [Pg.1056]    [Pg.303]    [Pg.309]    [Pg.460]    [Pg.80]    [Pg.82]    [Pg.6]    [Pg.170]    [Pg.211]    [Pg.5]    [Pg.370]   


SEARCH



Carbon-metal catalysts

Catalysts carbon

Hydrogen transition

Hydrogenation transition metals

Metal carbonates hydrogen

Metal rhodium

Rhodium carbon

Rhodium carbon catalysts

Rhodium catalysts catalyst

Rhodium catalysts hydrogen

Rhodium hydrogenation catalyst

Transition catalyst

© 2024 chempedia.info