Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reynolds stresses dissipation rate tensor

The Reynolds-averaged approach is widely used for engineering calculations, and typically includes models such as Spalart-Allmaras, k-e and its variants, k-co, and the Reynolds stress model (RSM). The Boussinesq hypothesis, which assumes pt to be an isotropic scalar quantity, is used in the Spalart-Allmaras model, the k-s models, and the k-co models. The advantage of this approach is the relatively low computational cost associated with the computation of the turbulent viscosity, fit. For the Spalart-Allmaras model, one additional transport equation representing turbulent viscosity is solved. In the case of the k-e and k-co models, two additional transport equations for the turbulence kinetic energy, k, and either the turbulence dissipation rate, s, or the specific dissipation rate, co, are solved, and pt is computed as a function of k and either e or co. Alternatively, in the RSM approach, transport equations can be solved for each of the terms in the Reynolds stress tensor. An additional scale-determining equation (usually for s) is also required. This means that seven additional transport equations must be solved in 3D flows. [Pg.319]

Thus, only the normal Reynolds stresses (i = j) are directly dissipated in a high-Reynolds-number turbulent flow. The shear stresses (i / j), on the other hand, are dissipated indirectly, i.e., the pressure-rate-of-strain tensor first transfers their energy to the normal stresses, where it can be dissipated directly. Without this redistribution of energy, the shear stresses would grow unbounded in a simple shear flow due to the unbalanced production term Vu given by (2.108). This fact is just one illustration of the key role played by 7 ., -in the Reynolds stress balance equation. [Pg.69]

Experience with applying the Reynolds-stress model (RSM) to complex flows has shown that the most critical term in (4.52) to model precisely is the anisotropic rate-of-strain tensor 7 .--1 (Pope 2000). Relatively simple models are thus usually employed for the other unclosed terms. For example, the dissipation term is often assumed to be isotropic ... [Pg.136]

The calculation of the six components of the Reynolds stress tensor, that is, six second-order moments of the micro-PDF, f v,yf), is reduced to the calculation of k and the modeling of the turbulent viscosity pf As seen from (12.5.1-2), is a function of a limited number of second-order moments of the micro-PDF. Turbulent viscosity based closure models for the Reynolds-stresses can be used at relatively low computational effort. In the two-equation model approach, the turbulent viscosity is expressed in terms of the turbulent kinetic energy, k, and the turbulence dissipation rate, s, according to ... [Pg.663]

The physical interpretation of the terms in the equation is not necessary obvious. The first term on the LHS denotes the rate of accumulation of the kinematic turbulent momentum flux within the control volume. The second term on the LHS denotes the advection of the kinematic turbulent momentum flux by the mean velocity. In other words, the left hand side of the equation constitutes the substantial time derivative of the Reynolds stress tensor v v. The first and second terms on the RHS denote the production of the kinematic turbulent momentum flux by the mean velocity shears. The third term on the RHS denotes the transport of the kinematic momentum flux by turbulent motions (turbulent diffusion). This latter term is unknown and constitutes the well known moment closure problem in turbulence modeling. The fourth and fifth terms on the RHS denote the turbulent transport by the velocity-pressure-gradient correlation terms (pressure diffusion). The sixth term on the RHS denotes the redistribution by the return to isotropy term. In the engineering literature this term is called the pressure-strain correlation, but is nevertheless characterized by its redistributive nature (e.g., [132]). The seventh term on the RHS denotes the molecular diffusion of the turbulent momentum flux. The eighth term on the RHS denotes the viscous dissipation term. This term is often abbreviated by the symbol... [Pg.137]


See other pages where Reynolds stresses dissipation rate tensor is mentioned: [Pg.69]    [Pg.50]    [Pg.139]    [Pg.525]    [Pg.138]   
See also in sourсe #XX -- [ Pg.50 ]

See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Dissipation rate

Dissipative stress tensor

Reynold

Reynolds stresses

Stress dissipation

© 2024 chempedia.info