Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reynold number

It is essential for the rotating-disc that the flow remain laminar and, hence, the upper rotational speed of the disc will depend on the Reynolds number and experimental design, which typically is 1000 s or 10,000 rpm. On the lower lunit, 10 s or 100 rpm must be applied in order for the thickness of tlie boundary layer to be comparable to that of the radius of the disc. [Pg.1936]

The convection term in the equation of motion is kept for completeness of the derivations. In the majority of low Reynolds number polymer flow models this term can be neglected. [Pg.71]

The majority of polymer flow processes are characterized as low Reynolds number Stokes (i.e. creeping) flow regimes. Therefore in the formulation of finite element models for polymeric flow systems the inertia terms in the equation of motion are usually neglected. In addition, highly viscous polymer flow systems are, in general, dominated by stress and pressure variations and in comparison the body forces acting upon them are small and can be safely ignored. [Pg.111]

The simplest case of fluid modeling is the technique known as computational fluid dynamics. These calculations model the fluid as a continuum that has various properties of viscosity, Reynolds number, and so on. The flow of that fluid is then modeled by using numerical techniques, such as a finite element calculation, to determine the properties of the system as predicted by the Navier-Stokes equation. These techniques are generally the realm of the engineering community and will not be discussed further here. [Pg.302]

The Reynolds number for flow in a tube is defined by dvpirj, where d is the diameter of the tube, V is the average velocity of the fluid along the tube, p is the density of the fluid, and rj is its dynamic viscosity. At flow velocities corresponding with values of the Reynolds number of greater than 2000, turbulence is encountered. [Pg.497]

Reynolds number Re Reynolds numbers Reynolds stresses Rezipas... [Pg.852]

For hquid systems v is approximately independent of velocity, so that a plot of JT versus v provides a convenient method of determining both the axial dispersion and mass transfer resistance. For vapor-phase systems at low Reynolds numbers is approximately constant since dispersion is determined mainly by molecular diffusion. It is therefore more convenient to plot H./v versus 1/, which yields as the slope and the mass transfer resistance as the intercept. Examples of such plots are shown in Figure 16. [Pg.265]

Pressure Drop. The prediction of pressure drop in fixed beds of adsorbent particles is important. When the pressure loss is too high, cosdy compression may be increased, adsorbent may be fluidized and subject to attrition, or the excessive force may cmsh the particles. As discussed previously, RPSA rehes on pressure drop for separation. Because of the cychc nature of adsorption processes, pressure drop must be calculated for each of the steps of the cycle. The most commonly used pressure drop equations for fixed beds of adsorbent are those of Ergun (143), Leva (144), and Brownell and co-workers (145). Each of these correlations uses a particle Reynolds number (Re = G///) and friction factor (f) to calculate the pressure drop (AP) per... [Pg.287]

Reynolds dumber. One important fluid consideration in meter selection is whether the flow is laminar or turbulent in nature. This can be deterrnined by calculating the pipe Reynolds number, Ke, a dimensionless number which represents the ratio of inertial to viscous forces within the flow. Because... [Pg.55]

A low Reynolds number indicates laminar flow and a paraboHc velocity profile of the type shown in Figure la. In this case, the velocity of flow in the center of the conduit is much greater than that near the wall. If the operating Reynolds number is increased, a transition point is reached (somewhere over Re = 2000) where the flow becomes turbulent and the velocity profile more evenly distributed over the interior of the conduit as shown in Figure lb. This tendency to a uniform fluid velocity profile continues as the pipe Reynolds number is increased further into the turbulent region. [Pg.55]

Fig. 1. Flow profiles, where N is velocity (a) laminar, and (b) turbulent for fluids having Reynolds numbers of A, 2 x 10, and B, 2 x 10 . Fig. 1. Flow profiles, where N is velocity (a) laminar, and (b) turbulent for fluids having Reynolds numbers of A, 2 x 10, and B, 2 x 10 .
An outstanding advantage of common differential pressure meters is the existence of extensive tables of discharge coefficients ia terms of beta ratio and Reynolds numbers (1,4). These tables, based on historic data, are generally regarded as accurate to within 1—5% depending on the meter type, the beta ratio, the Reynolds number, and the care taken ia manufacture. Improved accuracy can be obtained by miming an actual flow caUbration on the device. [Pg.59]

The wedge design maintains a square root relationship between flow rate and differential pressure for pipe Reynolds numbers as low as approximately 500. The meter can be flow caUbrated to accuracies of approximately 1% of actual flow rate. Accuracy without flow caUbration is about 5%. [Pg.61]

This equation is appHcable for gases at velocities under 50 m/s. Above this velocity, gas compressibiUty must be considered. The pitot flow coefficient, C, for some designs in gas service, is close to 1.0 for Hquids the flow coefficient is dependent on the velocity profile and Reynolds number at the probe tip. The coefficient drops appreciably below 1.0 at Reynolds numbers (based on the tube diameter) below 500. [Pg.61]

La.mina.r Flow Elements. Each of the previously discussed differential-pressure meters exhibits a square root relationship between differential pressure and flow there is one type that does not. Laminar flow meters use a series of capillary tubes, roUed metal, or sintered elements to divide the flow conduit into innumerable small passages. These passages are made small enough that the Reynolds number in each is kept below 2000 for all operating conditions. Under these conditions, the pressure drop is a measure of the viscous drag and is linear with flow rate as shown by the PoiseuiHe equation for capilary flow ... [Pg.61]

Both wetted-sensor and clamp-on Doppler meters ate available for Hquid service. A straight mn of piping upstream of the meter and a Reynolds number of greater than 10,000 ate generally recommended to ensure a weU-developed flow profile. Doppler meters ate primarily used where stringent accuracy and repeatabiHty ate not requited. Slurry service is an important appHcation area. [Pg.66]

Flow Past Bodies. A fluid moving past a surface of a soHd exerts a drag force on the soHd. This force is usually manifested as a drop in pressure in the fluid. Locally, at the surface, the pressure loss stems from the stresses exerted by the fluid on the surface and the equal and opposite stresses exerted by the surface on the fluid. Both shear stresses and normal stresses can contribute their relative importance depends on the shape of the body and the relationship of fluid inertia to the viscous stresses, commonly expressed as a dimensionless number called the Reynolds number (R ), EHp/]1. The character of the flow affects the drag as well as the heat and mass transfer to the surface. Flows around bodies and their associated pressure changes are important. [Pg.89]

As the Reynolds number rises above about 40, the wake begins to display periodic instabiUties, and the standing eddies themselves begin to oscillate laterally and to shed some rotating fluid every half cycle. These still laminar vortices are convected downstream as a vortex street. The frequency at which they are shed is normally expressed as a dimensionless Strouhal number which, for Reynolds numbers in excess of 300, is roughly constant ... [Pg.91]

Flow Past Deformable Bodies. The flow of fluids past deformable surfaces is often important, eg, contact of Hquids with gas bubbles or with drops of another Hquid. Proper description of the flow must allow for both the deformation of these bodies from their shapes in the absence of flow and for the internal circulations that may be set up within the drops or bubbles in response to the external flow. DeformabiUty is related to the interfacial tension and density difference between the phases internal circulation is related to the drop viscosity. A proper description of the flow involves not only the Reynolds number, dFp/p., but also other dimensionless groups, eg, the viscosity ratio, 1 /p En tvos number (En ), Api5 /o and the Morton number (Mo),giJ.iAp/plG (6). [Pg.92]

The pressure drop accompanying pipe flow of such fluids can be described in terms of a generalized Reynolds number, which for pseudoplastic or dilatant fluids takes the form ... [Pg.96]

The transition from laminar to turbulent flow occurs at Reynolds numbers varying from ca 2000 for n > 1 to ca 5000 for n = 0.2. In the laminar region the Fanning friction factor (Fig. 2) is identical to that for Newtonian fluids. In the turbulent region the friction factor drops significantly with decreasing values of producing a family of curves. [Pg.96]

The phenomena are quite complex even for pipe flow. Efforts to predict the onset of instabiHty have been made using linear stabiHty theory. The analysis predicts that laminar flow in pipes is stable at all values of the Reynolds number. In practice, the laminar—turbulent transition is found to occur at a Reynolds number of about 2000, although by careful design of the pipe inlet it can be postponed to as high as 40,000. It appears that linear stabiHty analysis is not appHcable in this situation. [Pg.98]


See other pages where Reynold number is mentioned: [Pg.2]    [Pg.54]    [Pg.96]    [Pg.104]    [Pg.106]    [Pg.851]    [Pg.413]    [Pg.63]    [Pg.82]    [Pg.58]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.71]    [Pg.83]    [Pg.84]    [Pg.89]    [Pg.89]    [Pg.90]    [Pg.91]    [Pg.91]    [Pg.91]    [Pg.92]    [Pg.93]    [Pg.97]    [Pg.98]    [Pg.100]   
See also in sourсe #XX -- [ Pg.34 , Pg.160 ]

See also in sourсe #XX -- [ Pg.241 ]

See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Reynold

Reynolds number

© 2024 chempedia.info