Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversible ethers

At lower temperatures the oxonium salt or the alkyl hydrogen sulfate may react by an SN displacement mechanism with excess alcohol in the reaction mixture, thereby forming a dialkyl ether. Although each step in the reaction is reversible, ether formation can be enhanced by distilling away the ether as fast as it forms. Diethyl ether is made commercially by this process ... [Pg.630]

At high acidities, there is always the possibility of reversible ether and olefin formation which can provide alternative paths for exchange and which must be taken into account in calculating accurate rate constants. However, the rates of dehydration and hydration of olefins are usually... [Pg.128]

Extraction of steam distillates by solvents. The apparatus, depicted in Fig. 11,58, 7, may be employed for the continuous extraction of substances which are volatile in steam from their aqueous solutions or suspensions. Solvents of the ether type (i.e., lighter than water) or of the carbon tetrachloride type (i.e., heavier than water) may be used. A reflux condenser is inserted in the Bl9 socket, whilst flasks of suitable capacity are fltted into the lower B24 cone and the upper. B19 cone respectively. For extraction with ether, the flask attached to the upper. B19 cone contains the ether whilst the aqueous solution is placed in the flask fltted to the lower B2i cone the positions of the flasks are reversed... [Pg.224]

Note that in these cases the direction of the isomerization is the reverse of that observed with the 2-alkynyl ethers and sulfides. [Pg.8]

Allylic acetates are widely used. The oxidative addition of allylic acetates to Pd(0) is reversible, and their reaction must be carried out in the presence of bases. An important improvement in 7r-allylpalladium chemistry has been achieved by the introduction of allylic carbonates. Carbonates are highly reactive. More importantly, their reactions can be carried out under neutral con-ditions[13,14]. Also reactions of allylic carbamates[14], allyl aryl ethers[6,15], and vinyl epoxides[16,17] proceed under neutral conditions without addition of bases. [Pg.292]

It IS instructive to compare the physical properties of ethers with alkanes and alcohols With respect to boiling point ethers resemble alkanes more than alcohols With respect to solubility m water the reverse is true ethers resemble alcohols more than alkanes Why" ... [Pg.668]

The hydroxyl groups can be alkylated with the usual alkylating agents. To obtain aryl ethers a reverse treatment is used, such as treatment of butynediol toluenesulfonate or dibromobutyne with a phenol (44). Alkylene oxides give ether alcohols (46). [Pg.105]

Other Borohydrides. Potassium borohydride was formerly used in color reversal development of photographic film and was preferred over sodium borohydride because of its much lower hygroscopicity. Because other borohydrides are made from sodium borohydride, they are correspondingly more expensive. Generally their reducing properties are not sufficiently different to warrant the added cost. Zinc borohydride [17611-70-0] Zn(BH 2> however, has found many appHcations in stereoselective reductions. It is less basic than NaBH, but is not commercially available owing to poor thermal stabihty. It is usually prepared on site in an ether solvent. Zinc borohydride was initially appHed to stereoselective ketone reductions, especially in prostaglandin syntheses (36), and later to aldehydes, acid haHdes, and esters (37). [Pg.304]

Substitution Reactions on Side Chains. Because the benzyl carbon is the most reactive site on the propanoid side chain, many substitution reactions occur at this position. Typically, substitution reactions occur by attack of a nucleophilic reagent on a benzyl carbon present in the form of a carbonium ion or a methine group in a quinonemethide stmeture. In a reversal of the ether cleavage reactions described, benzyl alcohols and ethers may be transformed to alkyl or aryl ethers by acid-catalyzed etherifications or transetherifications with alcohol or phenol. The conversion of a benzyl alcohol or ether to a sulfonic acid group is among the most important side chain modification reactions because it is essential to the solubilization of lignin in the sulfite pulping process (17). [Pg.139]

Hydrogen chloride or a few drops of hydrochloric acid cataly2e the conversion of //-butyraldehyde iato the trimer, parabutyraldehyde, C22H24O2, (2,4,6-tripropyl-l,3,5-trioxane [56769-26-7] (1). The reaction is reversed by heating the parabutyraldehyde ia the presence of acid. Anhydrous hydrogen chloride at —40°C converts //-butyraldehyde iato l,l -dichlorodibutyl ether, (2) ia 70—75% yield (10). [Pg.378]

Commercially, sulfonic acid ion-exchange resins are used in fixed-bed reactors to make these tertiary alkyl ethers (14). Since the reaction is very selective to tertiary olefins and also reversible, a two-step procedure is also used to recover commercially pure tertiary olefins from mixed olefin process streams. The corresponding tertiary alkyl ether is produced in the olefin mixture and then easily separated from the unreacted olefins by simple fractionation. The reaction is then reversed in a second step to make a commercially pure tertiary olefin, usually isobutylene or isoamylene. [Pg.426]

Competitive metallation experiments with IV-methylpyrrole and thiophene and with IV-methylindole and benzo[6]thiophene indicate that the sulfur-containing heterocycles react more rapidly with H-butyllithium in ether. The comparative reactivity of thiophene and furan with butyllithium depends on the metallation conditions. In hexane, furan reacts more rapidly than thiophene but in ether, in the presence of tetramethylethylenediamine (TMEDA), the order of reactivity is reversed (77JCS(P1)887). Competitive metallation experiments have established that dibenzofuran is more easily lithiated than dibenzothiophene, which in turn is more easily lithiated than A-ethylcarbazole. These compounds lose the proton bound to carbon 4 in dibenzofuran and dibenzothiophene and the equivalent proton (bound to carbon 1) in the carbazole (64JOM(2)304). [Pg.59]

The main supramolecular self-assembled species involved in analytical chemistry are micelles (direct and reversed), microemulsions (oil/water and water/oil), liposomes, and vesicles, Langmuir-Blodgett films composed of diphilic surfactant molecules or ions. They can form in aqueous, nonaqueous liquid media and on the surface. The other species involved in supramolecular analytical chemistry are molecules-receptors such as calixarenes, cyclodextrins, cyclophanes, cyclopeptides, crown ethers etc. Furthermore, new supramolecular host-guest systems arise due to analytical reaction or process. [Pg.417]

By using various trapping reagents, it has been deduced that the transannular fragmentation is rapidly reversible. The cyclization of the fragmented radical C is less favorable, and it is trapped at rates which exceed that for recyclization under most circumstances. " Radicals derived from ethers and acetals by hydrogen abstraction are subject to fragmentation, with formation of a ketone or ester, respectively. [Pg.723]

The toxic effect depends both on lipid and blood solubility. I his will be illustrated with an example of anesthetic gases. The solubility of dinitrous oxide (N2O) in blood is very small therefore, it very quickly saturates in the blood, and its effect on the central nervous system is quick, but because N,0 is not highly lipid soluble, it does not cause deep anesthesia. Halothane and diethyl ether, in contrast, are very lipid soluble, and their solubility in the blood is also high. Thus, their saturation in the blood takes place slowly. For the same reason, the increase of tissue concentration is a slow process. On the other hand, the depression of the central nervous system may become deep, and may even cause death. During the elimination phase, the same processes occur in reverse order. N2O is rapidly eliminated whereas the elimination of halothane and diethyl ether is slow. In addition, only a small part of halothane and diethyl ether are eliminated via the lungs. They require first biotransformation and then elimination of the metabolites through the kidneys into the... [Pg.260]

The reductive cleavage of -bromo ethers is a related reaction. If the ether is cyclic, the reverse reaction takes place on treatment with NBS ... [Pg.342]

Several variants of the above schemes have been investigated. Examples are the reversal of the oxidation (at C-3) and reduction steps [of the 5a-bromo ethers (2)] ° ... [Pg.266]


See other pages where Reversible ethers is mentioned: [Pg.745]    [Pg.745]    [Pg.745]    [Pg.745]    [Pg.163]    [Pg.323]    [Pg.941]    [Pg.46]    [Pg.280]    [Pg.346]    [Pg.528]    [Pg.1046]    [Pg.55]    [Pg.277]    [Pg.182]    [Pg.394]    [Pg.385]    [Pg.369]    [Pg.397]    [Pg.399]    [Pg.159]    [Pg.163]    [Pg.246]    [Pg.518]    [Pg.118]    [Pg.186]    [Pg.1319]    [Pg.235]    [Pg.36]    [Pg.266]    [Pg.230]    [Pg.387]    [Pg.1031]   
See also in sourсe #XX -- [ Pg.1502 ]




SEARCH



Ether groups, reversing

Reversing Carbonyl and Ether or Amine Groups

© 2024 chempedia.info