Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resonance condition interpretation

Multifrequency EPR and especially high-frequency EPR has proven to be an important additional tool for the interpretation of complex EPR spectra. If the experiment is performed with different microwave excitation frequencies (ranging from S-band, 3 GHz, up to sub-mm wavelengths, 360 GHz) the magnetic field for the resonance condition with the Zeeman-split electron... [Pg.119]

Adding potassium hydroxide, KOH, to a melt containing KF and a 0.1 mol fraction of K2TaF7 leads to the appearance of an additional band at 900 cm 1, as shown in Fig. 79 [342]. This band corresponds to TaO bond vibrations in TaOF63 complex ions. Interpretation of IR spectra obtained from more concentrated melts is less clear (Fig. 80). The observed absorption in the range of 900-700 cm 1 indicates the formation of oxyfluoride polyanions with oxygen bridges. ..OTaO. The appearance of a fine band structure could be related to very low concentrations of some isolated components. These isolated conditions prevent resonance interaction between components and thus also prevent expansion of the bands by a mechanism of resonance [362]. [Pg.183]

The use of computer simulations to study internal motions and thermodynamic properties is receiving increased attention. One important use of the method is to provide a more fundamental understanding of the molecular information contained in various kinds of experiments on these complex systems. In the first part of this paper we review recent work in our laboratory concerned with the use of computer simulations for the interpretation of experimental probes of molecular structure and dynamics of proteins and nucleic acids. The interplay between computer simulations and three experimental techniques is emphasized (1) nuclear magnetic resonance relaxation spectroscopy, (2) refinement of macro-molecular x-ray structures, and (3) vibrational spectroscopy. The treatment of solvent effects in biopolymer simulations is a difficult problem. It is not possible to study systematically the effect of solvent conditions, e.g. added salt concentration, on biopolymer properties by means of simulations alone. In the last part of the paper we review a more analytical approach we have developed to study polyelectrolyte properties of solvated biopolymers. The results are compared with computer simulations. [Pg.82]

Enantiomers have identical chemical and physical properties in the absence of an external chiral influence. This means that 2 and 3 have the same melting point, solubility, chromatographic retention time, infrared spectroscopy (IR), and nuclear magnetic resonance (NMR) spectra. However, there is one property in which chiral compounds differ from achiral compounds and in which enantiomers differ from each other. This property is the direction in which they rotate plane-polarized light, and this is called optical activity or optical rotation. Optical rotation can be interpreted as the outcome of interaction between an enantiomeric compound and polarized light. Thus, enantiomer 3, which rotates plane-polarized light in a clockwise direction, is described as (+)-lactic acid, while enantiomer 2, which has an equal and opposite rotation under the same conditions, is described as (—)-lactic acid. [Pg.5]

Measurements of the chemical composition of an aqueous solution phase are interpreted commonly to provide experimental evidence for either adsorption or surface precipitation mechanisms in sorption processes. The conceptual aspects of these measurements vis-a-vis their usefulness in distinguishing adsorption from precipitation phenomena are reviewed critically. It is concluded that the inherently macroscopic, indirect nature of the data produced by such measurements limit their applicability to determine sorption mechanisms in a fundamental way. Surface spectroscopy (optical or magnetic resonance), although not a fully developed experimental technique for aqueous colloidal systems, appears to offer the best hope for a truly molecular-level probe of the interfacial region that can discriminate among the structures that arise there from diverse chemical conditions. [Pg.217]

In practice, spin decoupling experiments are conducted in the following way. First, the spectrum is recorded under normal conditions. Then the spectrum is recorded while a second radiofrequency emitter irradiates at the resonance frequency of the nuclei that are to be decoupled (Fig. 9.22). This double resonance technique is used to identify nuclei which are coupled and which cause interpretation difficulties in the spectrum. [Pg.148]

The absolute velocity imparted to the drive shaft can be determined either directly or indirectly (30, 32, 87, 88). In the latter technique, the spectrum of a compound with well-established Mossbauer parameters is collected, and to the positions in the spectrum where resonances appear, specific absolute velocities can be assigned. The velocities at other positions in the spectrum are then inferred by interpolation between these known velocities. This indirect calibration is then used in the interpretation of other spectra obtained with the same drive unit. Unfortunately, compounds with well-established Mossbauer parameters may not be available for the Mossbauer isotope of interest. For 57Fe, however, this is not a problem, and metallic iron foils and sodium nitroprusside are often used for calibration purposes. Thus, the 57Fe resonance may be used to calibrate the drive unit, and this unit can then be used to study other Mossbauer isotopes if the drive unit is operated under identical conditions. [Pg.159]


See other pages where Resonance condition interpretation is mentioned: [Pg.48]    [Pg.67]    [Pg.220]    [Pg.371]    [Pg.217]    [Pg.222]    [Pg.238]    [Pg.21]    [Pg.217]    [Pg.93]    [Pg.382]    [Pg.356]    [Pg.193]    [Pg.318]    [Pg.232]    [Pg.282]    [Pg.1297]    [Pg.140]    [Pg.81]    [Pg.103]    [Pg.582]    [Pg.56]    [Pg.779]    [Pg.257]    [Pg.495]    [Pg.514]    [Pg.495]    [Pg.226]    [Pg.299]    [Pg.735]    [Pg.31]    [Pg.71]    [Pg.98]    [Pg.105]    [Pg.124]    [Pg.62]    [Pg.86]    [Pg.394]    [Pg.87]    [Pg.107]    [Pg.269]    [Pg.152]    [Pg.662]   
See also in sourсe #XX -- [ Pg.89 , Pg.94 ]




SEARCH



Resonance condition

Resonance interpretation

© 2024 chempedia.info