Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resistivity zirconium/titanium borides

Borides are inert toward nonoxidizing acids however, a few, such as Be2B and MgB2, react with aqueous acids to form boron hydrides. Most borides dissolve in oxidizing acids such as nitric or hot sulfuric acid and they ate also readily attacked by hot alkaline salt melts or fused alkaU peroxides, forming the mote stable borates. In dry air, where a protective oxide film can be preserved, borides ate relatively resistant to oxidation. For example, the borides of vanadium, niobium, tantalum, molybdenum, and tungsten do not oxidize appreciably in air up to temperatures of 1000—1200°C. Zirconium and titanium borides ate fairly resistant up to 1400°C. Engineering and other properties of refractory metal borides have been summarized (1). [Pg.218]

Uses. In spite of unique properties, there are few commercial appUcations for monolithic shapes of borides. They are used for resistance-heated boats (with boron nitride), for aluminum evaporation, and for sliding electrical contacts. There are a number of potential uses ia the control and handling of molten metals and slags where corrosion and erosion resistance are important. Titanium diboride and zirconium diboride are potential cathodes for the aluminum Hall cells (see Aluminum and aluminum alloys). Lanthanum hexaboride and cerium hexaboride are particularly useful as cathodes ia electronic devices because of their high thermal emissivities, low work functions, and resistance to poisoning. [Pg.219]

Most borides are chemically inert in bulk form, which has led to industrial applications as engineering materials, principally at high temperature. The transition metal borides display a considerable resistance to oxidation in air. A few examples of applications are given here. Titanium and zirconium diborides, alone or in admixture with chromium diboride, can endure temperatures of 1500 to 1700 K without extensive attack. In this case, a surface layer of the parent oxides is formed at a relatively low temperature, which prevents further oxidation up to temperatures where the volatility of boron oxide becomes appreciable. In other cases the oxidation is retarded by the formation of some other type of protective layer, for instance, a chromium borate. This behavior is favorable and in contrast to that of the refractory carbides and nitrides, which form gaseous products (carbon oxides and nitrogen) in air at high temperatures. Boron carbide is less resistant to oxidation than the metallic borides. [Pg.409]


See other pages where Resistivity zirconium/titanium borides is mentioned: [Pg.257]    [Pg.763]   
See also in sourсe #XX -- [ Pg.879 ]




SEARCH



Borides

Titanium boride

Titanium borides

Titanium resistance

Zirconium boride

Zirconium resistance

© 2024 chempedia.info