Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resistivity chromatography

Azepino[l,2-fl]isoquinoline 315, finally obtained by Ebersbach s group (91HCA1095), has been described to be an unstable dark red oil that resists chromatography or crystallization but instead decomposes even at —20°C during a few hours. A small solvent influence in the electronic spectrum (Table 11) supports the assumption that dipolar structures do not significantly contribute to the ground level of potentially antiaromatic 315. [Pg.141]

Thermal Conductivity Detector One of the earliest gas chromatography detectors, which is still widely used, is based on the mobile phase s thermal conductivity (Figure 12.21). As the mobile phase exits the column, it passes over a tungsten-rhenium wire filament. The filament s electrical resistance depends on its temperature, which, in turn, depends on the thermal conductivity of the mobile phase. Because of its high thermal conductivity, helium is the mobile phase of choice when using a thermal conductivity detector (TCD). [Pg.569]

Lipoteichoic acids (from gram-positive bacteria) [56411-57-5J. Extracted by hot phenol/water from disrupted cells. Nucleic acids that were also extracted were removed by treatment with nucleases. Nucleic resistant acids, proteins, polysaccharides and teichoic acids were separated from lipoteichoic acids by anion-exchange chromatography on DEAE-Sephacel or by hydrophobic interaction on octyl-Sepharose [Fischer et al. Ear J Biochem 133 523 1983]. [Pg.546]

It is a common procedure to assume certain conditions for the chromatographic system and operating conditions and, as a result, simplify equations (20) and (21). However, in many cases the assumptions can easily be over-optimistic, to say the least. It is necessary, therefore, to carefully consider the conditions that may allow such simplifying procedures and take steps to ensure that such conditions are carefully met when such expressions are used in practice. Now, the relative magnitudes of the resistance to mass transfer terms will vary with the type of columns (packed or capillary), the type of chromatography (GC or LC) and the type of particle, i.e., porous or microporous (diatomaceous support or silica gel). [Pg.278]

Size exclusion chromatography (SEC, also known as GPC and GFC) has become a very well accepted separation method since its introduction in the late-1950s by works of Porath and Flodin (1) and Moore (2). Polymers Standards Service (PSS) packings for SEC/SEC columns share this long-standing tradition as universal and stable sorbents for all types of polymer applications. In general, PSS SEC columns are filled with spherical, macroporous cross-linked, pressure-stable, and pH-resistant polymeric gels. [Pg.267]

The high-purity water thus produced typically has a conductance of about 0.5 x 10-6fi-1cm-1 (0.5juScm-1) and is suitable for use under the most stringent requirements. It will meet the purity required for trace-element determinations and for operations such as ion chromatography. It must however be borne in mind that such water can readily become contaminated from the vessels in which it is stored, and also by exposure to the atmosphere. For the determination of organic compounds the water should be stored in containers made of resistant glass (e.g. Pyrex), or ideally of fused silica, whereas for inorganic determinations the water is best stored in containers made from polythene or from polypropylene. [Pg.91]

When 2,7-dimethyloxepin is treated with potassium in liquid ammonia at — 70 C, a mixture of oct-4-en-2-one (1) and octa-4,6-dien-2-one (2) in a ratio of 75 20 is obtained.203 The major product can be separated by preparative gas chromatography in 23% yield. The analogous reaction of 3-benzoxepin gives, in 30% yield, a mixture of (2-cthylphenyl)acetaldehyde (3) and (2-ethynylphenyl)acetaldehyde (4) that resists separation.203 The Latter product can be formed exclusively in 17% yield when 3-benzoxepin is treated with sodium amide in tetra-hydrofuran at 33 C for 210 minutes.203... [Pg.41]

Using oxathiane 11, ( + )-(i )-2-methoxy-2-phenylpropanoic acid was obtained in 97% ee, however, the synthesis contains some inconvenient reaction steps. Thus, reduction of ( + )-10-camphorsulfonic acid (8) leads in low yield to a mixture of 10-mercaptoisoborneol (9 A) and 10-mercaptoborneol (9B) which must be separated by chromatography. The oxathiane 10 resists deprotonation with butyllithium and, therefore,, y -butyllithium had to be employed. Furthermore, after addition of methylmagnesium iodide, cleavage of the oxathiane moiety 12, with iodomethane did not proceed as well as with the simpler oxathianes 3. [Pg.111]

In cases of quite volatile compounds, vapour-phase chromatography gives excellent specificity, although the usefulness of the method is limited because of the low vapour pressures and poor heat resistance of many organometallic compounds. [Pg.90]

The effects of various pore-size distributions, including Gaussian, rectangular distributions, and continuous power-law, coupled with an assumption of cylindrical pores and mass transfer resistance on chromatographic behavior, have been developed by Goto and McCoy [139]. This study utilized the method of moments to determine the effects of the various distributions on mean retention and band spreading in size exclusion chromatography. [Pg.552]


See other pages where Resistivity chromatography is mentioned: [Pg.22]    [Pg.22]    [Pg.150]    [Pg.530]    [Pg.546]    [Pg.84]    [Pg.202]    [Pg.511]    [Pg.72]    [Pg.341]    [Pg.108]    [Pg.242]    [Pg.110]    [Pg.182]    [Pg.183]    [Pg.2064]    [Pg.119]    [Pg.245]    [Pg.258]    [Pg.284]    [Pg.347]    [Pg.126]    [Pg.56]    [Pg.676]    [Pg.67]    [Pg.221]    [Pg.602]    [Pg.26]    [Pg.163]    [Pg.37]    [Pg.26]    [Pg.863]    [Pg.309]    [Pg.79]    [Pg.82]    [Pg.83]    [Pg.689]    [Pg.122]    [Pg.514]    [Pg.379]    [Pg.215]   
See also in sourсe #XX -- [ Pg.348 ]




SEARCH



© 2024 chempedia.info