Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

REMPI-technique

When a second weak probe laser is used, it can cross the plume at different locations, where it generates spatially resolved laser-induced fluorescence, which can be detected and analyzed. Using REMPI techniques, ionization of the neutral species can be achieved with subsequent mass-selective detection in a mass spectrometer. [Pg.624]

The most widely used laser photoionization technique is undoubtedly REMPI. This technique yields valuable spectroscopic information on the resonant (neutral) intermediate states involved, but generally yields little or no information on the ionization step itself. The practical details and virtues of the REMPI technique have been described earlier, and the reader is referred to Chapter 9 for further discussion. [Pg.251]

The laser REMPI technique possesses many valuable properties that make it very effective in the discrimination and analysis of biological isomers in complex mixtures of organic molecules. Its enhanced spectral selectivity and low degree of fragmentation, combined with the capabilities of mass spectrometry, are especially valuable for the study of biomolecules (Lubman 1990). The need to use high-power timable UV laser pulses with an intensity of the order of 10 W/cw can be considered a disadvantage of this technique. [Pg.195]

Technically, laser excitation to Rydberg states can be performed either directly or, similarly to the REMPI technique, via an excited state, using two lasers. The advantage of the first method is that we need no prior information about the excited states. The advantage of the second method is that investigation of chemically impure samples can be carried out since one can select of the molecule of interest by varying the excitation laser energy. [Pg.667]

In contrast to the ionization of C q after vibrational excitation, typical multiphoton ionization proceeds via the excitation of higher electronic levels. In principle, multiphoton ionization can either be used to generate ions and to study their reactions, or as a sensitive detection technique for atoms, molecules, and radicals in reaction kinetics. The second application is more common. In most cases of excitation with visible or UV laser radiation, a few photons are enough to reach or exceed the ionization limit. A particularly important teclmique is resonantly enlianced multiphoton ionization (REMPI), which exploits the resonance of monocluomatic laser radiation with one or several intennediate levels (in one-photon or in multiphoton processes). The mechanisms are distinguished according to the number of photons leading to the resonant intennediate levels and to tire final level, as illustrated in figure B2.5.16. Several lasers of different frequencies may be combined. [Pg.2135]

Vj = 1 <— v" = 1 transition will be at a different energy than the Vj = 0 <— v" = 0. We use this fact to measure the vibrational spectrum of V (OCO) in a depletion experiment (Fig. 12a). A visible laser is set to the Vj = 0 Vj = 0 transition at 15,801 cm producing fragment ions. A tunable IR laser fires before the visible laser. Absorption of IR photons removes population from the ground state, which is observed as a decrease in the fragment ion signal. This technique is a variation of ion-dip spectroscopy, in which ions produced by 1 + 1 REMPI are monitored as an IR laser is tuned. Ion-dip spectroscopy has been used by several groups to study vibrations of neutral clusters and biomolecules [157-162]. [Pg.358]

This chapter deals mainly with (multi)hyphenated techniques comprising wet sample preparation steps (e.g. SFE, SPE) and/or separation techniques (GC, SFC, HPLC, SEC, TLC, CE). Other hyphenated techniques involve thermal-spectroscopic and gas or heat extraction methods (TG, TD, HS, Py, LD, etc.). Also, spectroscopic couplings (e.g. LIBS-LIF) are of interest. Hyphenation of UV spectroscopy and mass spectrometry forms the family of laser mass-spectrometric (LAMS) methods, such as REMPI-ToFMS and MALDI-ToFMS. In REMPI-ToFMS the connecting element between UV spectroscopy and mass spectrometry is laser-induced REMPI ionisation. An intermediate state of the molecule of interest is selectively excited by absorption of a laser photon (the wavelength of a tuneable laser is set in resonance with the transition). The excited molecules are subsequently ionised by absorption of an additional laser photon. Therefore the ionisation selectivity is introduced by the resonance absorption of the first photon, i.e. by UV spectroscopy. However, conventional UV spectra of polyatomic molecules exhibit relatively broad and continuous spectral features, allowing only a medium selectivity. Supersonic jet cooling of the sample molecules (to 5-50 K) reduces the line width of their... [Pg.428]

Detection limits in the lOOfg range can be obtained with a tuneable UV laser working at a wavelength of maximum absorption for the compounds of interest. Continuous supersonic beams require high gas loads and combination with a pulsed ionisation technique (e.g. REMPI) is unfavourable in terms of sensitivity. Pulsed valves are a better approach for a GC-UV-MS interface [1021]. [Pg.562]

The use of GC-MS in polymer/additive analysis is now well established. Various GC-based polymer/additive protocols have been developed, embracing HTGC-MS, GC-HRMS and fast GC-MS with a wide variety of front-end devices (SHS, DHS, TD, DSI, LD, Py, SPE, SPME, PTV, etc.). Ionisation modes employed are mainly El, Cl (for gases) and ICPI (for liquid and solid samples). Useful instrumental developments are noticed for TD-GC-MS. GC-SMB-MS is a fast analytical tool as opposed to fast chromatography only [104]. GC-ToFMS is now about to take off. GC-REMPI-MS represents a 3D analytical technique based on compound-selective parameters of retention time, resonance ionisation wavelength and molecular mass [105]. [Pg.735]

If we consider only a few of the general requirements for the ideal polymer/additive analysis techniques (e.g. no matrix interferences, quantitative), then it is obvious that the choice is much restricted. Elements of the ideal method might include LD and MS, with reference to CRMs. Laser desorption and REMPI-MS are moving closest to direct selective sampling tandem mass spectrometry is supreme in identification. Direct-probe MS may yield accurate masses and concentrations of the components contained in the polymeric material. Selective sample preparation, efficient separation, selective detection, mass spectrometry and chemometric deconvolution techniques are complementary rather than competitive techniques. For elemental analysis, LA-ICP-ToFMS scores high. [Pg.744]

For ion TOF measurement a probe laser was used to ionize reaction products in the reaction zone. The (1 + F) resonance-enhanced multiphoton ionization (REMPI) method was adapted for H-atom detection. The necessary vacuum ultraviolet (VUV) radiation near 121.6 nm (for Lyman-a transition) can readily be generated by a frequency-tripling technique in a Kr cell.37 The sensitivity of this (1 +1 ) REMPI detection scheme is extremely high owing to the large absorption cross-section of Lyman-a transition,... [Pg.6]

Fig. 1. Detection schemes for H-atoms. Rydberg tagging technique is slightly different from the (1 + l )-REMPI detection scheme in which the H atom is directly ionized Rydberg tagging only pumps the H atom to a high Rydberg state. Fig. 1. Detection schemes for H-atoms. Rydberg tagging technique is slightly different from the (1 + l )-REMPI detection scheme in which the H atom is directly ionized Rydberg tagging only pumps the H atom to a high Rydberg state.
The general principle of detection of free radicals is based on the spectroscopy (absorption and emission) and mass spectrometry (ionization) or combination of both. An early review has summarized various techniques to detect small free radicals, particularly diatomic and triatomic species.68 Essentially, the spectroscopy of free radicals provides basic knowledge for the detection of radicals, and the spectroscopy of numerous free radicals has been well characterized (see recent reviews2-4). Two experimental techniques are most popular for spectroscopy studies and thus for detection of radicals laser-induced fluorescence (LIF) and resonance-enhanced multiphoton ionization (REMPI). In the photochemistry studies of free radicals, the intense, tunable and narrow-bandwidth lasers are essential for both the detection (via spectroscopy and photoionization) and the photodissociation of free radicals. [Pg.472]


See other pages where REMPI-technique is mentioned: [Pg.295]    [Pg.473]    [Pg.160]    [Pg.65]    [Pg.661]    [Pg.218]    [Pg.160]    [Pg.317]    [Pg.110]    [Pg.289]    [Pg.119]    [Pg.15]    [Pg.182]    [Pg.666]    [Pg.295]    [Pg.473]    [Pg.160]    [Pg.65]    [Pg.661]    [Pg.218]    [Pg.160]    [Pg.317]    [Pg.110]    [Pg.289]    [Pg.119]    [Pg.15]    [Pg.182]    [Pg.666]    [Pg.1199]    [Pg.321]    [Pg.6]    [Pg.7]    [Pg.741]    [Pg.392]    [Pg.562]    [Pg.562]    [Pg.743]    [Pg.12]    [Pg.14]    [Pg.39]    [Pg.88]    [Pg.164]    [Pg.165]    [Pg.284]    [Pg.285]    [Pg.331]    [Pg.375]    [Pg.376]    [Pg.473]   
See also in sourсe #XX -- [ Pg.661 , Pg.669 ]




SEARCH



REMPI

© 2024 chempedia.info