Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Removable template techniques

As mentioned above, metal/CPs with core-sheath structure can be prepared by the template method. However, the approach based on the template technique is complicated and non-economical because of the need to remove the templates. In fact, metal/CPs with core-sheath structure can be fabricated via a one-step chemical polymerization [83-87]. Niu and co-workers demonstrated that Au/PANI coaxial nanocables could also be fabricated by the redox reaction between chloroauric acid and aniline in the presence of d-CSA [85]. In that case, CSA acted not only as a dopant, but also as a surfactant or a soft template. In addition to Ag/PPy and Au/PANI nanocables, cable-like Au/poly(3,4-ethylenedioxythiophene) (PEDOT) nanostructures have been synthesized in the absence of any surfactant or stabilizer through one-step interfadal polymerization of EDOT dissolved in dichloromethane solvent and HAuCl dissolved in water [86]. Microscopy studies showed (Figure 13.6) that the outer and inner diameters of Au/PEDOT nanocables were aroimd 50 and 30 nm, respectively. [Pg.695]

Another approach to prepare the hoUow nanofibres used electrospun nanofibres as the template ( tubes-by-fibre-template technique, TUFT). The nanofibres are firstly coated with a layer of shell material and then the fibre material is removed by dissolving or calcination, giving tubulous fibres. [Pg.105]

Colloidal lithography is another technique of interest, as the process incorporates the use of soluble particles as removable templates. Recent... [Pg.29]

New templated polymer support materials have been developed for use as re versed-phase packing materials. Pore size and particle size have not usually been precisely controlled by conventional suspension polymerization. A templated polymerization is used to obtain controllable pore size and particle-size distribution. In this technique, hydrophilic monomers and divinylbenzene are formulated and filled into pores in templated silica material, at room temperature. After polymerization, the templated silica material is removed by base hydrolysis. The surface of the polymer may be modified in various ways to obtain the desired functionality. The particles are useful in chromatography, adsorption, and ion exchange and as polymeric supports of catalysts (39,40). [Pg.10]

A number of studies have recently been devoted to membrane applications [8, 100-102], Yoshikawa and co-workers developed an imprinting technique by casting membranes from a mixture of a Merrifield resin containing a grafted tetrapeptide and of linear co-polymers of acrylonitrile and styrene in the presence of amino acid derivatives as templates [103], The membranes were cast from a tetrahydrofuran (THF) solution and the template, usually N-protected d- or 1-tryptophan, removed by washing in more polar nonsolvents for the polymer (Fig. 6-17). Membrane applications using free amino acids revealed that only the imprinted membranes showed detectable permeation. Enantioselective electrodialysis with a maximum selectivity factor of ca. 7 could be reached, although this factor depended inversely on the flux rate [7]. Also, the transport mechanism in imprinted membranes is still poorly understood. [Pg.180]

In order to get the pore system of zeolites available for adsorption and catalysis the template molecules have to be removed. This is generally done by calcination in air at temperatures up to 500 °C. A careful study (ref. 12) of the calcination of as-synthesized TPA-containing MFI-type single crystals by infrared spectroscopy and visible light microscopy showed that quat decomposition sets in around 350 °C. Sometimes special techniques are required, e.g. heating in an ammonia atmosphere (ref. 13) in the case of B-MFI (boron instead of aluminum present) to prevent loss of crystallinity of the zeolite during template quat removal. [Pg.208]

Thermal treatments can be applied to modify the properties of a material, for example, dealumination and optimization of crystalHne phases. These techniques do not require oxidants. Oxidative thermal treatments are generally employed to activate molecular sieves, by removing the organic templates employed during synthesis. This is one of the key steps when preparing porous catalysts or adsorbents. In air-atmosphere calcination, the templates are typically combusted between 400... [Pg.121]

It is evident that dedicated studies are required for each structure to optimize the template oxidation protocol. Many structures, in particular nonsiliceous, are thermally very sensitive [14, 15]. Calcination can result in a complete breakdown due to hydrolysis, redox processes, and phase transformations. The removal of templates in those systems is critical, making the development of mild detemplation techniques necessary [16]. [Pg.122]

Solvent extraction is the most important technique for recovering surfactants from mesoporous materials. However, it is not very effective when applied to microporous compounds. Davis et al. [186] successfully extracted borosilicate and silicate BEA stractures with acetic acid while a small template fraction could be removed for the aluminosilicate. [Pg.133]

The benefit of the LbL technique is that the properties of the assemblies, such as thickness, composition, and function, can be tuned by varying the layer number, the species deposited, and the assembly conditions. Further, this technique can be readily transferred from planar substrates (e.g., silicon and quartz slides) [53,54] to three-dimensional substrates with various morphologies and structures, such as colloids [55] and biological cells [56]. Application of the LbL technique to colloids provides a simple and effective method to prepare core-shell particles, and hollow capsules, after removal of the sacrificial core template particles. The properties of the capsules prepared by the LbL procedure, such as diameter, shell thickness and permeability, can be readily adjusted through selection of the core size, the layer number, and the nature of the species deposited [57]. Such capsules are ideal candidates for applications in the areas of drug delivery, sensing, and catalysis [48-51,57]. [Pg.213]

Recently, the LbL technique has been extended from conventional nonporous substrates to macroporous substrates, such as 3DOM materials [58,59], macroporous membranes [60-63], and porous calcium carbonate microparticles [64,65], to prepare porous PE-based materials. LbL-assembly of polyelectrolytes can also be performed on the surface of MS particles preloaded with enzymes [66,67] or small molecule drugs [68], and, under appropriate solution conditions, within the pores of MS particles to generate polymer-based nanoporous spheres following removal of the silica template [69]. [Pg.213]


See other pages where Removable template techniques is mentioned: [Pg.53]    [Pg.53]    [Pg.331]    [Pg.263]    [Pg.106]    [Pg.1733]    [Pg.526]    [Pg.105]    [Pg.146]    [Pg.36]    [Pg.260]    [Pg.63]    [Pg.148]    [Pg.596]    [Pg.194]    [Pg.195]    [Pg.48]    [Pg.113]    [Pg.208]    [Pg.255]    [Pg.191]    [Pg.63]    [Pg.444]    [Pg.501]    [Pg.431]    [Pg.134]    [Pg.516]    [Pg.192]    [Pg.156]    [Pg.427]    [Pg.733]    [Pg.213]    [Pg.146]    [Pg.1177]    [Pg.290]    [Pg.32]    [Pg.124]    [Pg.51]    [Pg.218]   
See also in sourсe #XX -- [ Pg.53 , Pg.54 ]




SEARCH



Removal techniques

Template technique

© 2024 chempedia.info