Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation times molecular models

For example, if the molecular structure of one or both members of the RP is unknown, the hyperfine coupling constants and -factors can be measured from the spectrum and used to characterize them, in a fashion similar to steady-state EPR. Sometimes there is a marked difference in spin relaxation times between two radicals, and this can be measured by collecting the time dependence of the CIDEP signal and fitting it to a kinetic model using modified Bloch equations [64]. [Pg.1616]

In connection with a discussion of the Eyring theory, we remarked that Newtonian viscosity is proportional to the relaxation time [Eqs. (2.29) and (2.31)]. What is needed, therefore, is an examination of the nature of the proportionality between the two. At least the molecular weight dependence of that proportionality must be examined to reach a conclusion as to the prediction of the reptation model of the molecular weight dependence of viscosity. [Pg.124]

In principle, the relaxation spectrum H(r) describes the distribution of relaxation times which characterizes a sample. If such a distribution function can be determined from one type of deformation experiment, it can be used to evaluate the modulus or compliance in experiments involving other modes of deformation. In this sense it embodies the key features of the viscoelastic response of a spectrum. Methods for finding a function H(r) which is compatible with experimental results are discussed in Ferry s Viscoelastic Properties of Polymers. In Sec. 3.12 we shall see how a molecular model for viscoelasticity can be used as a source of information concerning the relaxation spectrum. [Pg.167]

There are three basic time scales in the reptation model [49]. The first time Te Ml, describes the Rouse relaxation time between entanglements of molecular weight Me and is a local characteristic of the wriggling motion. The second time Tro M, describes the propagation of wriggle motions along the contour of the chain and is related to the Rouse relaxation time of the whole chain. The important... [Pg.360]

Given the specific, internuclear dipole-dipole contribution terms, p,y, or the cross-relaxation terms, determined by the methods just described, internuclear distances, r , can be calculated according to Eq. 30, assuming isotropic motion in the extreme narrowing region. The values for T<.(y) can be readily estimated from carbon-13 or deuterium spin-lattice relaxation-times. For most organic molecules in solution, carbon-13 / , values conveniently provide the motional information necessary, and, hence, the type of relaxation model to be used, for a pertinent description of molecular reorientations. A prerequisite to this treatment is the assumption that interproton vectors and C- H vectors are characterized by the same rotational correlation-time. For rotational isotropic motion, internuclear distances can be compared according to... [Pg.137]

First approaches to approximating the relaxation time on the basis of molecular parameters can be traced back to Rouse [33]. The model is based on a number of boundary assumptions (1) the solution is ideally dilute, i.e. intermolecular interactions are negligible (2) hydrodynamic interactions due to disturbance of the medium velocity by segments of the same chain are negligible and (3) the connector tension F(r) obeys an ideal Hookean force law. [Pg.25]

The first possibility is that the attractive potential associated with the solid surface leads to an increased gaseous molecular number density and molecular velocity. The resulting increase in both gas-gas and gas-wall collision frequencies increases the T1. The second possibility is that although the measurements were obtained at a temperature significantly above the critical temperature of the bulk CF4 gas, it is possible that gas molecules are adsorbed onto the surface of the silica. The surface relaxation is expected to be very slow compared with spin-rotation interactions in the gas phase. We can therefore account for the effect of adsorption by assuming that relaxation effectively stops while the gas molecules adhere to the wall, which will then act to increase the relaxation time by the fraction of molecules on the surface. Both models are in accord with a measurable increase in density above that of the bulk gas. [Pg.311]

Even if we consider a single solvent, e g., water, at a single temperature, say 298K, depends on the solute and in fact on the coordinate of the solute which is under consideration, and we cannot take xF as a constant. Nevertheless, in the absence of a molecular dynamics simulation for the solute motion of interest, XF for polar solvents like water is often approximated by the Debye model. In this model, the dielectric polarization of the solvent relaxes as a single exponential with a relaxation time equal to the rotational (i.e., reorientational) relaxation time of a single molecule, which is called Tp) or the Debye time [32, 347], The Debye time may be associated with the relaxation of the transverse component of the polarization field. However the solvent fluctuations and frictional relaxation occur on a faster scale given by [348,349]... [Pg.63]

Inner slip, between the solid wall and an adsorbed film, will also influence the surface-liquid boundary conditions and have important effects on stress propagation from the liquid to the solid substrate. Linked to this concept, especially on a biomolecular level, is the concept of stochastic coupling. At the molecular level, small fluctuations about the ensemble average could affect the interfacial dynamics and lead to large shifts in the detectable boundary condition. One of our main interests in this area is to study the relaxation time of interfacial bonds using slip models. Stochastic boundary conditions could also prove to be all but necessary in modeling the behavior and interactions of biomolecules at surfaces, especially with the proliferation of microfluidic chemical devices and the importance of studying small scales. [Pg.82]


See other pages where Relaxation times molecular models is mentioned: [Pg.225]    [Pg.11]    [Pg.210]    [Pg.123]    [Pg.124]    [Pg.165]    [Pg.134]    [Pg.25]    [Pg.110]    [Pg.659]    [Pg.416]    [Pg.287]    [Pg.725]    [Pg.482]    [Pg.275]    [Pg.93]    [Pg.222]    [Pg.83]    [Pg.203]    [Pg.335]    [Pg.189]    [Pg.119]    [Pg.127]    [Pg.284]    [Pg.334]    [Pg.10]    [Pg.142]    [Pg.113]    [Pg.190]    [Pg.193]    [Pg.193]    [Pg.259]    [Pg.4]    [Pg.217]    [Pg.230]    [Pg.233]    [Pg.248]    [Pg.251]    [Pg.109]    [Pg.106]   
See also in sourсe #XX -- [ Pg.334 ]




SEARCH



Molecular relaxations

Relaxation model

Timed models

© 2024 chempedia.info