Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent effects relaxation

If the timestep is short relative to the velocity relaxation time, the solvent does not play much part in the motion. Indeed, if y = 0, there are no solvent effects at all. A simple algorithm for advancing the position vector r and velocity v has been given by van Gunsteren (van Gunsteren, Berendsen and Rullmaim, 1981) ... [Pg.253]

The use of computer simulations to study internal motions and thermodynamic properties is receiving increased attention. One important use of the method is to provide a more fundamental understanding of the molecular information contained in various kinds of experiments on these complex systems. In the first part of this paper we review recent work in our laboratory concerned with the use of computer simulations for the interpretation of experimental probes of molecular structure and dynamics of proteins and nucleic acids. The interplay between computer simulations and three experimental techniques is emphasized (1) nuclear magnetic resonance relaxation spectroscopy, (2) refinement of macro-molecular x-ray structures, and (3) vibrational spectroscopy. The treatment of solvent effects in biopolymer simulations is a difficult problem. It is not possible to study systematically the effect of solvent conditions, e.g. added salt concentration, on biopolymer properties by means of simulations alone. In the last part of the paper we review a more analytical approach we have developed to study polyelectrolyte properties of solvated biopolymers. The results are compared with computer simulations. [Pg.82]

Actually, all of the above results are in contradiction to the currently conventional view [32-35] that solvent dynamical effects for electronically adiabatic ET reactions are determined by solvent dynamics in the R and P wells, and not the barrier top region. This misses the correct picture, even for fairly cusped barrier. Instead, it is the solvent dynamics occurring near the barrier top, and the associated time dependent friction, that are the crucial aspects. It could however be thought possible that, for cusped barrier adiabatic ET reactions in much more slowly relaxing solvents, the well dynamics could begin to play a significant role. However, MD simulations have now been carried out for the same ET solute in a solvent where the... [Pg.250]

The equivalent conductivity of an electrolyte solution decreases with increasing concentration due to interionic attractions described mainly by the electrophoretic and relaxation field effects 2-35>. This decrease is more pronounced if in addition the electrolyte is associated. Association of ionic salts by ion-pairing is commonly observed in solvents of low or moderate dielectric constant. The immediate goals in the analysis of conductance data are the. determination of the limiting equivalent conductance at infinite dilution, A0, and the evaluation of the association constant, KA, if ion-pairing occurs. [Pg.12]

When the temperature is lowered and/or the viscosity of the solution is increased by using glycerol-water mixtures as solvent, the reorientational correlation time increases. Since the reorientational time is the correlation time for nuclear relaxation, the effects on the NMRD profile (Pig. 27) are (i) higher relaxivity values at low frequencies (ii) a shift toward lower... [Pg.151]

Frisch, T., Verga, A. Slow relaxation and solvent effects in the collapse of a polymer. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2002, 66, 041807. [Pg.73]

Photochemistry can be used to demonstrate solvent effects in supercritical fluids. The analysis revealed trimodal fluorescence lifetime distributions near the critical temperature, which can be explained by the presence of solvent-solute and solute-solute clustering. This local aggregation causes an increase in nonradiative relaxations and, therefore, a decrease in the observed fluorescence lifetimes. Concentration and density gradients are responsible for these three unique lifetimes (trimodal) in the supercritical fluid, as contrasted with the single lifetime observed in a typical organic solvent. The... [Pg.75]

Sengwa, R.J., Solvent effects on microwave dielectric relaxation in poly(ethylene glycols), Polym. Int., 1998, 45, 43. [Pg.172]

The proper choice of a solvent for a particular application depends on several factors, among which its physical properties are of prime importance. The solvent should first of all be liquid under the temperature and pressure conditions at which it is employed. Its thermodynamic properties, such as the density and vapour pressure, and their temperature and pressure coefficients, as well as the heat capacity and surface tension, and transport properties, such as viscosity, diffusion coefficient, and thermal conductivity also need to be considered. Electrical, optical and magnetic properties, such as the dipole moment, dielectric constant, refractive index, magnetic susceptibility, and electrical conductance are relevant too. Furthermore, molecular characteristics, such as the size, surface area and volume, as well as orientational relaxation times have appreciable bearing on the applicability of a solvent or on the interpretation of solvent effects. These properties are discussed and presented in this Chapter. [Pg.119]

The water-promoted hydrolyses of a bicyclic amide, l-azabicyclo[2.2.2]octan-2-one (87), and a planar analogue, l,4-dimethylpiperidin-2-one (88), were studied using density functional theory in conjunction with a continuum dielectric method to introduce bulk solvent effects. The aim of these studies was to reveal how the twisting of the C-N bond affects the neutral hydrolysis of amides. The results predict important rate accelerations of the neutral hydrolysis of amides when the C-N bond is highly twisted, the corresponding barrier relaxation depending on the specific reaction pathway and transition state involved.85... [Pg.72]

A similar system to that discussed in ref. [44] (tetrazine, tetrazole and pyrrole) has been studied by Manalo et al. [47] by means of the CSGT/ASC method at the B3LYP/6-311++G(2d,2p) level. The cavity was defined by using the Pauling radius for each solute atom. In this paper the effects of geometric relaxation (indirect effects) are found to be small, and the direct influence of the intensity of the solvent reaction field on the shielding constants dominates. However, the indirect effect has been found to be important for N, A-dimethylacetamidine in IEF-PCM calculations [48],... [Pg.136]

At a more detailed level, we note that the solvent effects on the optical rotation have the same origins as solvent effects on the energy itself, as described in detail in other contributions to this book. Most other studies of solvent effects on natural optical activity have focused on the electrostatic contributions. These contributions can be partitioned into direct effects arising from the influence of the dielectric environment on the electronic density of the solute, and into indirect effects arising from the relaxation of the nuclear structure in the solvent. For conformationally flexible molecules, we may also consider a third possible solvent effect due to the changes in the conformational equilibria when going from the gas phase to solution. [Pg.211]

The PCM/DFT model failed to predict the intrinsic rotation (i.e. the specific rotation extrapolated to infinite dilution) of (R)-3-methylcyclopentanone dissolved in carbon tetrachloride, methanol and acetonitrile [68], This molecule has been investigated because it exists in both an equatorial and an axial form, allowing researchers to investigate the interplay of solvent and conformational effects. The conformer populations used in the Boltzmann averaging were derived from IR absorption and VCD spectra. The deviation of the calculated optical rotation from experiment was found actually to be larger when IEF-PCM was used to account for direct solvent effects (and geometry relaxation) on the optical rotation than when the gas-phase values were used. [Pg.214]


See other pages where Solvent effects relaxation is mentioned: [Pg.2985]    [Pg.406]    [Pg.323]    [Pg.593]    [Pg.330]    [Pg.334]    [Pg.151]    [Pg.686]    [Pg.301]    [Pg.87]    [Pg.28]    [Pg.52]    [Pg.357]    [Pg.41]    [Pg.238]    [Pg.156]    [Pg.331]    [Pg.389]    [Pg.28]    [Pg.70]    [Pg.141]    [Pg.53]    [Pg.111]    [Pg.102]    [Pg.20]    [Pg.134]    [Pg.139]    [Pg.140]    [Pg.564]   
See also in sourсe #XX -- [ Pg.361 , Pg.362 , Pg.499 ]




SEARCH



Relaxation effect

© 2024 chempedia.info