Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation oscillator chemical example

Most people who study periodic behavior deal with linear oscillators and therefore tend to think of oscillations as sinusoidal. Chemical oscillators are, as we have seen, decidedly nonlinear, and their waveforms can depart quite drastically from being sinusoidal. Even after accepting that chemical oscillations can look as nonsinusoidal as the relaxation oscillations shown in Figure 4.4, our intuition may still resist the notion that a single period of oscillation might contain two, three, or perhaps twenty-three, maxima and minima. As an example, consider the behavior shown in Figure 8.1, where the potential of a bromide-selective electrode... [Pg.163]

It was determined, for example, that the surface tension of water relaxes to its equilibrium value with a relaxation time of 0.6 msec [104]. The oscillating jet method has been useful in studying the surface tension of surfactant solutions. Figure 11-21 illustrates the usual observation that at small times the jet appears to have the surface tension of pure water. The slowness in attaining the equilibrium value may partly be due to the times required for surfactant to diffuse to the surface and partly due to chemical rate processes at the interface. See Ref. 105 for similar studies with heptanoic acid and Ref. 106 for some anomalous effects. [Pg.34]

Relaxation methods can be classified as either transient or stationary (Bernasconi, 1986). The former include pressure and temperature jump (p-jump and t-jump, respectively), and electric field pulse. With these methods, the equilibrium is perturbed and the relaxation time is monitored using some physical measurement such as conductivity. Examples of stationary relaxation methods are ultrasonic and certain electric field methods. Here, the reaction system is perturbed using a sound wave, which creates temperature and pressure changes or an oscillating electric field. Chemical relaxation can then be determined by analyzing absorbed energy (acous-... [Pg.62]

We have seen that chemical and biological interactions lead to mathematical models displaying a variety of linear and nonlinear behavior relaxation to fixed points, multistability, excitability, oscillations, chaos, etc. Despite the different origin of the models, and the diverse nature of the variables they represent (chemical concentrations, population numbers, or even membrane electric potentials) the mathematical structures are quite similar, and it is possible to understand some aspects of the dynamics in one field (e.g. the chemical oscillations in the BZ reaction) with the help of models from other fields (for example the FN model of neurophysiology, or a phytoplankton-zooplankton model). This possibility of common mathematical description will be used in the rest of the book to highlight the similarities and relationships between chemical and biological dynamics when occurring in fluid flows. [Pg.123]

Chemical reaction network is a typical example of complexity, where the reactants can interact in a variety of ways depending on the nature of interaction (chemical as well as non-chemical). Oscillatory reactions involve a number of steps, including positive and negative feedbacks. The complexity leads to periodic as well as aperiodic oscillations (multi-periodic, bursting/intermittency sequential oscillations separated by a time pause, relaxation and chaotic oscillations). The mechanism is usually determined by non-linear kinetics and computer modelling. Once the reaction mechanism has been postulated, the non-linear time-dependent kinetic equation can be formulated in terms of concentrations of different reactants, which would yield a multi-variable equation. Delay differential equations are sometimes used to characterize oscillatory behaviour as in economics (Chapter 14). [Pg.317]


See other pages where Relaxation oscillator chemical example is mentioned: [Pg.1471]    [Pg.197]    [Pg.624]    [Pg.100]    [Pg.205]    [Pg.305]    [Pg.20]    [Pg.305]    [Pg.7]    [Pg.16]    [Pg.90]    [Pg.10]    [Pg.80]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



Chemical oscillations

Chemical oscillator

Oscillator relaxation

Relaxation oscillations

Relaxation, chemical

© 2024 chempedia.info