Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation mechanisms effects

Nuclear dipole-dipole interaction is a veiy important relaxation mechanism, and this is reflected in the relationship between 7, and the number of protons bonded to a carbon. The motional effect is nicely shown by tbe 7 values for n-decanol, which suggest that the polar end of the molecule is less mobile than the hydrocarbon tail. Comparison of iso-octane with n-decanol shows that the entire iso-octane molecule is subject to more rapid molecular motion than is n-decanol—compare the methyl group T values in these molecules. [Pg.176]

Though the accuracy of description of flow curves of real polymer melts, attained by means of Eq. (10), is not always sufficient, but doubtless the equation of such a structure based on the idea of relaxation mechanism of non-Newtonian polymer flow, correctly reflects the main peculiarities of viscous properties. Therefore while discussing the effect a filler has on the viscosity properties of polymer melts, besides the dependences Y(filler modifies the characteristic time of relaxation. According to [19], a possible form of the X versus

[Pg.86]

The existence of characteristic time D"1 must lead to the appearance of specific relaxation effects. This relaxation mechanism has nothing in common with visco-... [Pg.89]

A possible approach to interpretation of a low-frequency region of the G ( ) dependence of filled polymers is to compare it with a specific relaxation mechanism, which appears due to the presence of a filler in the melt. We have already spoken about two possible mechanisms — the first, associated with adsorption phenomena on a filler s surface and the second, determined by the possibility of rotational diffusion of anisodiametrical particles with characteristic time D 1. But even if these effects are not taken into account, the presence of a filler can be related with the appearance of a new characteristic time, Xf, common for any systems. It is expressed in the following way... [Pg.94]

Anxiolytics are drugs used for the treatment of anxiety disorders. Apart from benzodiazpines, a frequently used anxiolytic is the 5HT1A (serotonin) receptor agonist buspiron, which has no sedative, amnestic or muscle-relaxant side effects, but whose action takes about a week to develop. Furthermore, it is less efficaceous than the benzodiazepines. Buspiron s mechanism of action is not fully understood. [Pg.201]

There is greatly renewed interest in electron solvation, due to improved laser technology. However it is apparent that a simple theoretical description such as implied by Eq. (9.15) would be inadequate. That equation assumes a continuum dielectric with a unique relaxation mechanism, such as molecular dipole rotation. There is evidence that structural effects are important, and there could be different mechanisms of relaxation operating simultaneously (Bagchi, 1989). Despite a great deal of theoretical work, there is as yet no good understanding of the evolution of free-ion yield in polar media. [Pg.314]

It is emphasized that the two kinds of quantum relaxation mechanisms lead, in agreement with experiment, to a shift of the first moment of the spectrum toward low frequencies, whereas the RY semiclassical indirect relaxation mechanism does not produce this effect. [Pg.303]

When Wqi / Wq2 the magnetization recovery may appear close to singleexponential, but the time constant thereby obtained is misleading [50]. The measurement of 7) of quadrupolar nuclei under MAS conditions presents additional complications that have been discussed by comparison to static results in GaN [50]. The quadrupolar (two phonon Raman) relaxation mechanism is strongly temperature dependent, varying as T1 well below and T2 well above the Debye temperature [ 119]. It is also effective even in cases where the static NQCC is zero, as in an ideal ZB lattice, since displacements from equilibrium positions produce finite EFGs. [Pg.251]

When r s, one has interconversion between operators Br and Bs, and Rrs is a cross-relaxation rate. Note that the cross-relaxation may or may not contain interference effects depending on the indices l and /, which keep track of interactions Cyj and C,. Cross-correlation rates and cross-relaxation rates have not been fully utilized in LC. However, there is a recent report41 on this subject using both the 13C chemical shielding anisotropy and C-H dipolar coupling relaxation mechanisms to study a nematic, and this may be a fruitful arena in gaining dynamic information for LC. We summarize below some well known (auto-)relaxation rates for various spin interactions commonly encountered in LC studies. [Pg.78]

The observations of complex dynamics associated with electron-stimulated desorption or desorption driven by resonant excitation to repulsive electronic states are not unexpected. Their similarity to the dynamics observed in the visible and near-infrared LID illustrate the need for a closer investigation of the physical relaxation mechanisms of low energy electron/hole pairs in metals. When the time frame for reaction has been compressed to that of the 10 s laser pulse, many thermal processes will not effectively compete with the effects of transient low energy electrons or nonthermal phonons. It is these relaxation channels which might both play an important role in the physical or chemical processes driven by laser irradiation of surfaces, and provide dramatic insight into subtle details of molecule-surface dynamics. [Pg.80]


See other pages where Relaxation mechanisms effects is mentioned: [Pg.127]    [Pg.127]    [Pg.1506]    [Pg.1744]    [Pg.202]    [Pg.405]    [Pg.211]    [Pg.67]    [Pg.90]    [Pg.93]    [Pg.125]    [Pg.905]    [Pg.126]    [Pg.160]    [Pg.163]    [Pg.164]    [Pg.327]    [Pg.489]    [Pg.91]    [Pg.92]    [Pg.95]    [Pg.73]    [Pg.324]    [Pg.101]    [Pg.103]    [Pg.304]    [Pg.271]    [Pg.73]    [Pg.136]    [Pg.239]    [Pg.258]    [Pg.35]    [Pg.553]    [Pg.56]    [Pg.215]    [Pg.131]    [Pg.16]    [Pg.7]   
See also in sourсe #XX -- [ Pg.300 , Pg.301 ]




SEARCH



MECHANICAL RELAXATION

Relaxation effect

Relaxation mechanisms

© 2024 chempedia.info