Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relativistic methods Dirac equation

Relativistic density functional theory can be used for all electron calculations. Relativistic DFT can be formulated using the Pauli formula or the zero-order regular approximation (ZORA). ZORA calculations include only the zero-order term in a power series expansion of the Dirac equation. ZORA is generally regarded as the superior method. The Pauli method is known to be unreliable for very heavy elements, such as actinides. [Pg.263]

In the relativistic KKR method the trial function inside the MT-sphere is chosen as a linear combination of solutions of the Dirac equation in the center-symmetrical field with variational coefficients C7 (k)... [Pg.141]

Our approach is based on a systematic semiclassical study of the Dirac equation. After separating particles and anti-particles to arbitrary powers in h, a semiclassical expansion of the quantum dynamics in the Heisenberg picture is developed. To leading order this method produces classical spin-orbit dynamics for particles and anti-particles, respectively, that coincide with the findings of Rubinow and Keller Hamiltonian relativistic (anti-) particles drive a spin precession along their trajectories. A modification of that method leads to a semiclassical equivalent of the Foldy-Wouthuysen transformation resulting in relativistic quantum Hamiltonians with spin-orbit coupling. [Pg.97]

At this point, it is appropriate to present a brief discussion on the origin of the FC operator (d function) in the two-component form (Pauli form) of the molecular relativistic Hamiltonian. Many textbooks adopt the point of view that the FC is a relativistic effect, which must be derived from the Dirac equation [50,51]. In other textbooks or review articles it is stressed that the FC is not a relativistic effect and that it can be derived from classical electrodynamics [52,53] disregarding the origin of the gyromagnetic factor g—2. In some textbooks both derivations are presented [54]. The relativistic derivations suffer from the inherent drawbacks in the Pauli expansion, in particular that the Pauli Hamiltonian can only be used in the context of the first-order perturbation theory. Moreover, the origin of the FC term appears to be different depending on whether one uses the ESC method or FW transformation. [Pg.464]

Methods for treating relativistic effects in molecular quantum mechanics have always seemed to me, if I may say so without appearing too impertinent to those who work in the field, a complete dog s breakfast. The difficulty is to know to what question they are supposed to be the answer, in the circumstances in which we find ourselves. We do not know what a relativistically invariant theory applicable to molecular behaviour might look like. As was pointed out to us at the last meeting, the Dirac equation certainly will not do to describe interacting electrons and even at the single particle level, where it seems to work, there is an inconsistency in interpreting its solutions in terms... [Pg.9]

Since the Dirac equation is written for one electron, the real problem of ah initio methods for a many-electron system is an accurate treatment of the instantaneous electron-electron interaction, called electron correlation. The latter is of the order of magnitude of relativistic effects and may contribute to a very large extent to the binding energy and other properties. The DCB Hamiltonian (Equation 3) accounts for the correlation effects in the first order via the Vy term. Some higher order of magnitude correlation effects are taken into account by the configuration interaction (Cl), the many-body perturbation theory (MBPT) and by the presently most accurate coupled cluster (CC) technique. [Pg.40]

For the computational investigation of molecular systems containing heavy atoms, such as transition metals, lanthanides, and actinides, we could neglect neither relativity nor electron correlation. Relativistic effects, both spin-free and spin-orbit, increase with the nuclear charge of atoms. Therefore, instead of the nonrelativistic Schrodinger equation, we must start with the Dirac equation, which has four-component solutions. For many-electron systems, the four-component Hamiltonian is constructed from the one-electron Dirac operator with an approximated relativistic two-electron operator, such as the Coulomb, Breit, or Gaunt operator, within the nopair approximation. The four-component method is relativistically rigorous, which includes both spin-free and spin-orbit effects in a balanced way. However it requires much computational time since it contains more variational parameters than the approximated, one or two-component method. [Pg.158]

Relativistic effects may be also considered by other methods than pseudopotentials. It is possible to carry out relativistic all-electron quantum chemical calculations of molecules. This is achieved by various approximations to the Dirac equation, which is the relativistic analogue to the nonrelativistic Schrodinger equation. We do not want to discuss the mathematical details of this rather complicated topic, which is an area where much progress has been made in recent years and where the development of new methods is a field of active research. Interested readers may consult published reviews . A method which has gained some popularity in recent years is the so-called Zero-Order Regular Approximation (ZORA) which gives rather accurate results ". It is probably fair to say that... [Pg.218]

Relativistic Methods 204 8.1 Connection Between the Dirac and Schrodinger Equations 207 8.2 Many-particle Systems 210 8.3 Four-component Calculations 213 11.4.1 Ab Initio Methods 272 11.4.2 DFT Methods 273 11.5 Bond Dissociation Curve 274 11.5.1 Basis Set Effect at the HF Level 274 11.5.2 Performance of Different Types of Wave Function 276... [Pg.4]

Accounting for relativistic effects in computational organotin studies becomes complicated, because Hartree-Fock (HF), density functional theory (DFT), and post-HF methods such as n-th order Mpller-Plesset perturbation (MPn), coupled cluster (CC), and quadratic configuration interaction (QCI) methods are non-relativistic. Relativistic effects can be incorporated in quantum chemical methods with Dirac-Hartree-Fock theory, which is based on the four-component Dirac equation. " Unformnately the four-component Flamiltonian in the all-electron relativistic Dirac-Fock method makes calculations time consuming, with calculations becoming 100 times more expensive. The four-component Dirac equation can be approximated by a two-component form, as seen in the Douglas-Kroll (DK) Hamiltonian or by the zero-order regular approximation To address the electron cor-... [Pg.270]

At first sight, it seems that in the relativistic case, it would be only a little more difficult to solve the SCF equations (2.4) based on the Dirac equation (2.1) for the four-component orbitals rather than the one-component SCF equations of the nonrelativistic theory. This could be done numerically, using a finite-difference method,... [Pg.65]

The MS-Xa method was extended by Yang et al. to include relativistic effects starting from the Dirac equations [61] but this calculation could not be iterated to self-consistency for technical reasons. The results, in column 2 of Table 3 are rather poor, in that the HOMO-LUMO gap is far too small, and the highest filled levels are again derived from ng. [Pg.253]


See other pages where Relativistic methods Dirac equation is mentioned: [Pg.457]    [Pg.458]    [Pg.194]    [Pg.159]    [Pg.138]    [Pg.206]    [Pg.252]    [Pg.206]    [Pg.252]    [Pg.225]    [Pg.285]    [Pg.286]    [Pg.142]    [Pg.362]    [Pg.5]    [Pg.250]    [Pg.131]    [Pg.252]    [Pg.176]    [Pg.13]    [Pg.13]    [Pg.41]    [Pg.77]    [Pg.291]    [Pg.293]    [Pg.74]    [Pg.15]    [Pg.16]    [Pg.70]    [Pg.70]    [Pg.108]    [Pg.184]    [Pg.236]    [Pg.10]    [Pg.17]    [Pg.24]    [Pg.194]    [Pg.260]    [Pg.631]   


SEARCH



Dirac equation

Relativistic Dirac equation

Relativistic methods

Relativistic methods equations

© 2024 chempedia.info