Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Regional asymmetries, membrane

There are regional asymmetries in membranes. Some, such as occur at the villous borders of mucosal cells, are almost macroscopicaUy visible. Others, such as those at gap junctions, tight junctions, and synapses, occupy much smaller regions of the membrane and generate correspondingly smaller local asymmetries. [Pg.420]

The functional reaction center contains two quinone molecules. One of these, Qb (Figure 12.15), is loosely bound and can be lost during purification. The reason for the difference in the strength of binding between Qa and Qb is unknown, but as we will see later, it probably reflects a functional asymmetry in the molecule as a whole. Qa is positioned between the Fe atom and one of the pheophytin molecules (Figure 12.15). The polar-head group is outside the membrane, bound to a loop region, whereas the hydrophobic tail is... [Pg.238]

The properties of membranes commonly studied by fluorescence techniques include motional, structural, and organizational aspects. Motional aspects include the rate of motion of fatty acyl chains, the head-group region of the phospholipids, and other lipid components and membrane proteins. The structural aspects of membranes would cover the orientational aspects of the lipid components. Organizational aspects include the distribution of lipids both laterally, in the plane of the membrane (e.g., phase separations), and across the membrane bilayer (phospholipid asymmetry) and distances from the surface or depth in the bilayer. Finally, there are properties of membranes pertaining to the surface such as the surface charge and dielectric properties. Fluorescence techniques have been widely used in the studies of membranes mainly since the time scale of the fluorescence lifetime coincides with the time scale of interest for lipid motion and since there are a wide number of fluorescence probes available which can be used to yield very specific information on membrane properties. [Pg.231]

Ultimately, sequestering charged lipids could potentially lead to a new stable state, in which bilayer bending forces favor membranes with local nonzero curvature. Moreover, the mechanism for coupling local lipid composition with membrane curvature may be complemented by a "local spontaneous curvature" mechanism [88], whereby the asymmetry between the spontaneous shapes of two monolayers is achieved by insertion of amphipathic N-terminal helices of certain BAR domains into the lipid polar head-groups region on one side of the membrane [7,88-95]. According to this mechanism, the insertion of an amphipathic... [Pg.248]

Increased steadily from the surface inward, quite quickly in the surface region and more slowly, but not negligibly, in the deeper regions. The transition layer was estimated to have a thickness of 19 pM (out of a total membrane thickness of 140 pM). Significantly, it was found that annealing the membrane resulted in Increased asymmetry. The water content was decreased to a greater extent in the skin than in the substructure layer (Table XI). [Pg.153]

Freeze-fracture electron microscopy of thylakoid membranes has clearly revealed an asymmetric lateral distribution of the various photosynthetic complexes in the granal and stromal membranes, i.e., the distribution of the protein complexes in the membrane is nonrandom. This lateral asymmetry was further substantiated by the results of electron microscopy of the inside-out vesicles discussed in Section Vll. These findings by electron microscopy are summarized by the model shown in Fig. 21 (A). It is a transverse cross section of the thylakoids shown earlier in Fig. 13 (D) and (D ), with the various photosynthetic protein complexes appropriately placed in the granal and stromal regions. [Pg.38]

Many phenomena of interest in science and technology take place at the interface between a liquid and a second phase. Corrosion, the operation of solar cells, and the water splitting reaction are examples of chemical processes that take place at the liquid/solid interface. Electron transfer, ion transfer, and proton transfer reactions at the interface between two immiscible liquids are important for understanding processes such as ion extraction, " phase transfer catalysis, drug delivery, and ion channel dynamics in membrane biophysics. The study of reactions at the water liquid/vapor interface is of crucial importance in atmospheric chemistry. Understanding the behavior of solute molecules adsorbed at these interfaces and their reactivity is also of fundamental theoretical interest. The surface region is an inhomogeneous environment where the asymmetry in the intermolecular forces may produce unique behavior. [Pg.205]


See other pages where Regional asymmetries, membrane is mentioned: [Pg.161]    [Pg.9]    [Pg.116]    [Pg.49]    [Pg.371]    [Pg.133]    [Pg.49]    [Pg.649]    [Pg.273]    [Pg.274]    [Pg.281]    [Pg.511]    [Pg.191]    [Pg.347]    [Pg.340]    [Pg.49]    [Pg.371]    [Pg.51]    [Pg.337]    [Pg.578]    [Pg.387]    [Pg.173]    [Pg.118]    [Pg.162]    [Pg.218]    [Pg.58]   
See also in sourсe #XX -- [ Pg.420 ]




SEARCH



Asymmetrie

Asymmetry

Membranes asymmetry

© 2024 chempedia.info