Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reductive and Oxidative Bond-formation Reactions

The external bonds in bicyclo[4.2.0]octan-2-ones can be cleaved both by reductive and oxidative processes, both reactions affording disubstituted cyclohexanones. This is illustrated (Sch. 18) by the SmI2-promoted formation of 3-alkyl-3-ethylcyclohexanones 69 from 6-alkylbicyclo[4.2.0]-octan-2-ones 70 [73], and by the formation of 2-alkyl-3-acylcyclohexanones 71 from 7-trimethylsilyloxybicyclo[4.2.0]octan-2-ones 72 via single electron oxidation [74]. [Pg.226]

Chapters 2 through 6 introduced many asymmetric organic reactions catalyzed by small molecules, such as C-C bond formation, reduction, and oxidation reactions. Chapter 7 provided further examples of how asymmetric reactions are used in organic synthesis. This chapter starts with a general introduction to enzyme-catalyzed asymmetric organic reactions. [Pg.451]

At this stage, sulfoximines had been shown to function as chiral ligands for various palladium and copper catalysts which led to enantioselectivities of >95% ee in various reactions. Furthermore, most of those catalyzed reactions were C-C bond formations. Obvious questions were, therefore, whether sulfoximines could also be applied in combination with other metals and whether reductions and oxidations could be catalyzed as well. A structural comparison of the sulfoximines leading to high ee values such as 55, 60, 81, and 85 revealed that all of them had a two-carbon distance between the two coordinating atoms (which were all nitrogen in these cases). [Pg.167]

Paquette et al. start with the bis-vinylogation of the same compound 29 [14], by Wittig-Horner reaction, reduction, and oxidation (Scheme 5). For the formation of the C17-C16 bond, the onti-aldol 41 (ds not reported) is obtained by treatment of the aldehyde 39 with the (Z)-boron enolate 40, bearing a dithioketal moiety that is later to be the C51-C54 side chain. 3-Hydroxy-assisted, diastereoselective reduction of the keto group at C15 gives 41, which is converted into intermediate 42 in five more steps. The dethioketalization of 41 is achieved with phenyliodine(m) bis(trifluoroacetate) [16], As in Nicolaou s synthesis, the N12-C13 amide bond is formed first, followed by a low-yielding (21%, even at a concentration of 1 him) macrolactonization to 3. Table 1 summarizes the benchmark data of the two total syntheses of sanglifehrin A (1). [Pg.357]

Carbonyl addition reactions include hydration, reduction and oxidation, the al-dol reaction, formation of hemiacetals and acetals (ketals), cyanohydrins, imines (Schiff bases), and enamines [54]. In all these reactions, some activation of the carbonyl bond is required, despite the polar nature of the C=0 bond. A general feature in hydration and acetal formation in solution is that the reactions have a minimum rate for intermediate values of the pH, and that they are subject to general acid and general base catalysis [121-123]. There has been some discussion on how this should be interpreted mechanistically, but quantum chemical calculations have demonstrated the bifunctional catalytic activity of a chain of water molecules (also including other molecules) in formaldehyde hydration [124-128]. In this picture the idealised situation of the gas phase addition of a single water molecule to protonated formaldehyde (first step of Fig. 5) represents the extreme low pH behaviour. [Pg.14]

Ozonolysis as used below is the oxidation process involving addition of ozone to an alkene to form an ozonide intermediate which eventually leads to the final product. Beyond the initial reaction of ozone to form ozonides and other subsequent intermediates, it is important to recall that the reaction can be carried out under reductive and oxidative conditions. In a general sense, early use of ozonolysis in the oxidation of dienes and polyenes was as an aid for structural determination wherein partial oxidation was avoided. In further work both oxidative and reductive conditions have been applied . The use of such methods will be reviewed elsewhere in this book. Based on this analytical use it was often assumed that partial ozonolysis could only be carried out in conjugated dienes such as 1,3-cyclohexadiene, where the formation of the first ozonide inhibited reaction at the second double bond. Indeed, much of the more recent work in the ozonolysis of dienes has been on conjugated dienes such as 2,3-di-r-butyl-l,3-butadiene, 2,3-diphenyl-l,3-butadiene, cyclopentadiene and others. Polyethylene could be used as a support to allow ozonolysis for substrates that ordinarily failed, such as 2,3,4,5-tetramethyl-2,4-hexadiene, and allowed in addition isolation of the ozonide. Oxidation of nonconjugated substrates, such as 1,4-cyclohexadiene and 1,5,9-cyclododecatriene, gave only low yields of unsaturated dicarboxylic acids. In a recent specific example... [Pg.920]

In addition to the studies on reduction and oxidation of metalloporphyrins, radiolytic methods have been used to investigate reactions of radicals with metalloporphyrins that lead to formation of metal-carbon bonds. Formation of metal-carbon bonds has been implicated in various catalytic reactions and in biological systems. Therefore, numerous studies have been carried out on the formation and decomposition of such bonds involving porphyrin complexes of Pe 38.s3,62,68-70co, ° Rh, and other metals, as well as complexes of related macrocycles, such as Co-phthalocyanine and Co-B,2. Certain oxidation states of transition metal ions react with free radicals by attachment to form organometallic products, some of which are stable but others are short-lived. Pulse radiolysis has been used to investigate the formation and decay of such species. [Pg.468]

Catalytic processes from the viewpoint of green chemistry include catalytic reductions and oxidations methods, solid-acid and solid-base catalysis, as well as carbon-carbon bond formation reactions (31). [Pg.3]


See other pages where Reductive and Oxidative Bond-formation Reactions is mentioned: [Pg.679]    [Pg.694]    [Pg.694]    [Pg.696]    [Pg.698]    [Pg.700]    [Pg.679]    [Pg.694]    [Pg.694]    [Pg.696]    [Pg.698]    [Pg.700]    [Pg.621]    [Pg.340]    [Pg.574]    [Pg.85]    [Pg.22]    [Pg.138]    [Pg.130]    [Pg.240]    [Pg.262]    [Pg.79]    [Pg.196]    [Pg.135]    [Pg.439]    [Pg.46]    [Pg.322]    [Pg.301]    [Pg.81]    [Pg.21]    [Pg.3773]    [Pg.240]    [Pg.404]    [Pg.224]    [Pg.147]    [Pg.2475]    [Pg.21]    [Pg.182]    [Pg.471]    [Pg.22]    [Pg.34]    [Pg.46]    [Pg.322]    [Pg.183]    [Pg.11]    [Pg.399]    [Pg.4749]    [Pg.12]   


SEARCH



Bond-formation reactions

Bonding oxidation reactions

Bonds reduction

Formate reductant

Formates reduction

Formation and reactions

Oxidants and reductants

Oxidation and reduction

Oxides and bonding

Oxides bonding

Reaction oxidation-reduction

Reduction and oxidation reaction

Reduction formation

© 2024 chempedia.info