Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reductions hydrosilanes

The Pd-catalyzed hydrogenoiysis of acyl chlorides with hydrogen to give aldehydes is called the Rosenmund reduction. Rosenmund reduction catalyzed by supported Pd is explained by the formation of an acylpalladium complex and its hydrogenolysis[744]. Aldehydes can be obtained using other hydrides. For example, the Pd-catalyzed reaction of acyl halides with tin hydride gives aldehydes[745]. This is the tin Form of Rosenmund reduction. Aldehydes are i ormed by the reaction of the thio esters 873 with hydrosilanes[746,747]. [Pg.257]

In 2009, Beller (Scheme 45) [147] and Nagashima (Scheme 46) [148] independently reported an iron-catalyzed hydrosilane reduction of carboxamides to amines. Although inexpensive PMHS and TMDS as an H-Si source are usable, the yield of product considerably decreased when hydrosilane containing only one H-Si moiety or iron sources such as Fe(acac)2 and FeX2 (X = F, Cl) was used. In both thermal and photoassisted conditions, almost the same reactivities were observed upon using a combination of Fe catalyst with TMDS (Scheme 46). [Pg.60]

A catalytic mechanism, which is supported by deuterium-labeling experiments in the corresponding Ru-catalyzed procedure [146], is shown in Scheme 47. Accordingly, the reactive Fe-hydride species is formed in situ by the reaction of the iron precatalyst with hydrosilane. Hydrosilylation of the carboxyl group affords the 0-silyl-A,0-acetal a, which is converted into the iminium intermediate b. Reduction of b by a second Fe-hydride species finally generates the corresponding amine and disiloxane. [Pg.60]

Scheme 47 Fe-catalyzed hydrosilane reduction of amides to amines... Scheme 47 Fe-catalyzed hydrosilane reduction of amides to amines...
Another method for reductive dimerization has been developed in hy-drosilylation. NiCl2-SEt2 is an effective catalyst in silylative dimerization of aromatic aldehydes with a hydrosilane (Scheme 12) [40]. A catalytic thiolate-bridged diruthenium complex [Cp RuCl(/ 2-SPrI)2RuCp ][OTf] also induces the conversion to 1,2-diaryl-1,2-disiloxyethane [41]. A dinuclear (siloxyben-zyl)ruthenium complex is considered to be formed, and the homolytic Ru - C bond fission leads to the siloxybenzyl radicals, which couple to the coupling product 14. [Pg.71]

Cp2Ti(PMe3)2 catalyzes the reductive cyclization of the enones 44 to the cyclopentanols 46 via the metallacyclic intermediates 45 (Scheme 27) [64-66]. The cleavage of the titanium-oxygen bond in the metallacycles 45 by a hydrosilane provides a route to the generation of the active catalyst. The net transformation resembles the above-mentioned complementary radical pathway, which affords the opposite isomer. [Pg.80]

Boc-protection, oxime reduction, 128 Bond dissociation energy (BDE), hydrosilanes, 6... [Pg.749]

Reduction of ketones using amino acid anions as catalyst and hydrosilane as oxidant... [Pg.143]

REDUCTION OF KETONES USING AMINO ACID ANIONS AS CATALYST AND HYDROSILANE AS OXIDANT... [Pg.169]

One of the fundamental operations in organic synthesis remains the stereoselective reduction of carbonyl groups1241. In a process related to that reported by Hosomi et u/.[25], using hydrosilanes as the stoichiometric oxidant and amino acid anions as the catalytic source of chirality, a variety of ketones were reduced in good to excellent yield and with good stereoselectivity1261. This process reduces the amount of chiral catalyst needed and utilizes catalysts from the chiral pool that can be used directly in their commercially available form. [Pg.169]

Reduction of a., -unsaturated carbonyl compounds. Hydrosilanes, particularly (QH,)2SiH2, in the presence of Pd(0), and a Lewis acid, particularly ZnCl2, can effect selective conjugate reduction of unsaturated ketones, aldehydes, and carboxylic acid derivatives. Chloroform is the solvent of choice. In addition, 1 equiv. of water is required. Experiments with D,0 and (C6H,),SiD2 indicate that... [Pg.177]

In sharp contrast to the unique pattern for the incorporation of carbon monoxide into the 1,6-diyne 63, aldehyde 77 was obtained as the sole product in the rhodium-catalyzed reaction of 1,6-enyne 76 with a molar equivalent of Me2PhSiH under CO (Scheme 6.15, mode 1) [22]. This result can be explained by the stepwise insertion of the acetylenic and vinylic moieties into the Rh-Si bond, the formyl group being generated by the reductive elimination to afford 77. The fact that a formyl group can be introduced to the ole-finic moiety of 76 under mild conditions should be stressed, since enoxysilanes are isolated in the rhodium-catalyzed silylformylation of simple alkenes under forcing conditions. The 1,6-enyne 76 is used as a typical model for Pauson-Khand reactions (Scheme 6.15, mode 2) [23], whereas formation of the corresponding product was completely suppressed in the presence of a hydrosilane. The selective formation of 79 in the absence of CO (Scheme 6.15, mode 3) supports the stepwise insertion of the acetylenic and olefmic moieties in the same molecules into the Rh-Si bond. [Pg.126]

Another reaction is reductive cyclization. 1,6-Diynes and 1.6-enynes undergo reductive cyclization using hydrosilanes as a hydrogen source in AcOH. The 1,6-diynes 91 and 95 are converted into the 1,2-dialkylidenecyclopentane derivatives (1,3-dienes) 94 and 96. Triethylsilane is used as a hydrogen donor for the reaction[48]. The reaction involves the formation of a vinylpalladium bond in 92 via the insertion of an alkyne into the Pd—H bond, followed by the alkyne insertion to give 93, which is hydrogenolyzed with Si—H to give the 1,3-dienes 94 and 96. [Pg.248]

None of these difficulties arise when hydrosilylation is promoted by metal catalysts. The mechanism of the addition of silicon-hydrogen bond across carbon-carbon multiple bonds proposed by Chalk and Harrod408,409 includes two basic steps the oxidative addition of hydrosilane to the metal center and the cis insertion of the metal-bound alkene into the metal-hydrogen bond to form an alkylmetal complex (Scheme 6.7). Interaction with another alkene molecule induces the formation of the carbon-silicon bond (route a). This rate-determining reductive elimination completes the catalytic cycle. The addition proceeds with retention of configuration.410 An alternative mechanism, the insertion of alkene into the metal-silicon bond (route b), was later suggested to account for some side reactions (alkene reduction, vinyl substitution).411-414... [Pg.322]

Selective reduction of alkynes to cis alkenes using hydrosilane functions immobilized on silica gel in acetic acid in the presence of a Pd(0) catalyst system has been reported.239... [Pg.654]

P configuration as it proceeds with retention when SiHCl3, SiH2Ph2 and other hydrosilanes are used. UAIH4 or Si2Cl6 are also possible reductants, but inversion sometimes occurs, especially with disilanes (equation (1)). [Pg.499]


See other pages where Reductions hydrosilanes is mentioned: [Pg.249]    [Pg.476]    [Pg.482]    [Pg.162]    [Pg.1569]    [Pg.74]    [Pg.77]    [Pg.89]    [Pg.89]    [Pg.114]    [Pg.120]    [Pg.123]    [Pg.132]    [Pg.133]    [Pg.137]    [Pg.139]    [Pg.5]    [Pg.352]    [Pg.815]    [Pg.816]    [Pg.224]    [Pg.239]    [Pg.111]    [Pg.134]    [Pg.145]    [Pg.488]    [Pg.245]    [Pg.412]    [Pg.337]    [Pg.323]    [Pg.50]    [Pg.50]    [Pg.51]   
See also in sourсe #XX -- [ Pg.245 ]




SEARCH



Hydrosilane

Hydrosilanes

Hydrosilanes, reduction with

© 2024 chempedia.info