Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction potential effects

Ozone can be analyzed by titrimetry, direct and colorimetric spectrometry, amperometry, oxidation—reduction potential (ORP), chemiluminescence, calorimetry, thermal conductivity, and isothermal pressure change on decomposition. The last three methods ate not frequently employed. Proper measurement of ozone in water requites an awareness of its reactivity, instabiUty, volatility, and the potential effect of interfering substances. To eliminate interferences, ozone sometimes is sparged out of solution by using an inert gas for analysis in the gas phase or on reabsorption in a clean solution. Historically, the most common analytical procedure has been the iodometric method in which gaseous ozone is absorbed by aqueous KI. [Pg.503]

R Varadarajan, TE Zewert, HB Gray, SG Boxer. Effects of buried lomzable ammo acids on the reduction potential of recombinant myoglobin. Science 243 69-72, 1989. [Pg.414]

Various other observations of Krapcho and Bothner-By are accommodated by the radical-anion reduction mechanism. Thus, the position of the initial equilibrium [Eq. (3g)] would be expected to be determined by the reduction potential of the metal and the oxidation potential of the aromatic compound. In spite of small differences in their reduction potentials, lithium, sodium, potassium and calcium afford sufficiently high concentrations of the radical-anion so that all four metals can effect Birch reductions. The few compounds for which comparative data are available are reduced in nearly identical yields by the four metals. However, lithium ion can coordinate strongly with the radical-anion, unlike sodium and potassium ions, and consequently equilibrium (3g) for lithium is shifted considerably... [Pg.15]

A major advance in the art of effecting Birch reductions was the discovery by Wilds and Nelson that lithium reduced aromatic steroids much more efficiently than had hitherto been possible with sodium or potassium. The superiority originally was attributed to the somewhat higher reduction potential of lithium as compared to the other alkali metals. Later work showed that the following explanation is more probable. ... [Pg.20]

Anhydrous NaC102 crystallizes from aqueous solutions above 37.4° but below this temperature the trihydrate is obtained. The commercial product contains about 80% NaC102. The anhydrous salt forms colourless deliquescent crystals which decompose when heated to 175-200° the reaction is predominantly a disproportionation to C103 and Cl but about 5% of molecular O2 is also released (based on the C102 consumed). Neutral and alkaline aqueous solutions of NaC102 are stable at room temperature (despite their thermodynamic instability towards disproportionation as evidenced by the reduction potentials on p. 854). This is a kinetic activation-energy effect and, when the solutions are heated near to boiling, slow disproportionation occurs ... [Pg.861]

Oxidation-reduction potential Because of the interest in bacterial corrosion under anaerobic conditions, the oxidation-reduction situation in the soil was suggested as an indication of expected corrosion rates. The work of Starkey and Wight , McVey , and others led to the development and testing of the so-called redox probe. The probe with platinum electrodes and copper sulphate reference cells has been described as difficult to clean. Hence, results are difficult to reproduce. At the present time this procedure does not seem adapted to use in field tests. Of more importance is the fact that the data obtained by the redox method simply indicate anaerobic situations in the soil. Such data would be effective in predicting anaerobic corrosion by sulphate-reducing bacteria, but would fail to give any information regarding other types of corrosion. [Pg.387]

The silver reductor has a relatively low reduction potential (the Ag/AgCl electrode potential in 1M hydrochloric acid is 0.2245 volt), and consequently it is not able to effect many of the reductions which can be made with amalgamated zinc. The silver reductor is preferably used with hydrochloric acid solutions, and this is frequently an advantage. The various reductions which can be effected with the silver and the amalgamated zinc reductors are summarised in Table 10.11. ... [Pg.414]

The Eo values for 2-substituted 1,4-benzoquinones (sets 45-4 through 45-7, 45-10) show an average value of pr of 59. Thus the resonance effect predominates. For most of these sets, the Op constants are not the best parameters for correlation. By contrast, the electron reduction potentials (set 45-8) show a Pr value of 39, which indicates predominance of the localized effect. The 2,5-disubstituted 1,4-benzoquinones differ distinctly in their behavior from the 2-substituted 1,4-benzoquinones in that they show an average Pr value of 53. The one-electron reduction potentials of these compounds show about the same composition of the electrical effect, with a value of Pr of 50. The only set of Eq values available for the 2,6-disubstituted 1,4-benzoquinones pve a Pr value of 51, comparable to the values observed for the 2,5-disubsti-tuted 1,4-benzoquinones. The 2,3,5,6-tetrasubstituted 1,4-benzoquinones have... [Pg.167]

As mentioned previously, in [FegS4] + clusters, the three Fe(III) ions are not completely equivalent. NMR spectroscopy may allow one to locate the iron with the lowest reduction potential, as being the one characterized by the weakest magnetic couplings with the other two irons. However, this is true only if the energetic contributions due to other factors, such as electrostatic effects or solvent accessibility 93), are less important than those due to the magnetic coupling of the... [Pg.265]

The oxidation potential of carbanions, ox> or the reduction potential of carbocations, red> could be a practical scale of stability as defined by (3). These potentials can be measured by voltammetry, although the scale is subject to assumptions regarding elimination of the diffusional potential and solvation effects. [Pg.178]

As the cation becomes progressively more reluctant to be reduced than [53 ], covalent bond formation is observed instead of electron transfer. Further stabilization of the cation causes formation of an ionic bond, i.e. salt formation. Thus, the course of the reaction is controlled by the electron affinity of the carbocation. However, the change from single-electron transfer to salt formation is not straightforward. As has been discussed in previous sections, steric effects are another important factor in controlling the formation of hydrocarbon salts. The significant difference in the reduction potential at which a covalent bond is switched to an ionic one -around -0.8 V for tropylium ion series and —1.6 V in the case of l-aryl-2,3-dicyclopropylcyclopropenylium ion series - may be attributed to steric factors. [Pg.216]

Stresses caused by chemical forces, such as hydration stress, can have a considerable influence on the stability of a wellbore [364]. When the total pressure and the chemical potential of water increase, water is absorbed into the clay platelets, which results either in the platelets moving farther apart (swelling) if they are free to move or in generation of hydrational stress if swelling is constrained [1715]. Hydrational stress results in an increase in pore pressure and a subsequent reduction in effective mud support, which leads to a less stable wellbore condition. [Pg.62]

Determination of the reduction potentials of the diiron center in the hydroxylase, shown in Eq. (2), and investigation of the effects of the other two MMO components on those potentials, have revealed different behavior for the two organisms (Table II). [Pg.273]


See other pages where Reduction potential effects is mentioned: [Pg.435]    [Pg.834]    [Pg.435]    [Pg.834]    [Pg.31]    [Pg.101]    [Pg.389]    [Pg.389]    [Pg.396]    [Pg.398]    [Pg.212]    [Pg.2167]    [Pg.68]    [Pg.16]    [Pg.716]    [Pg.1101]    [Pg.252]    [Pg.70]    [Pg.163]    [Pg.368]    [Pg.369]    [Pg.78]    [Pg.231]    [Pg.28]    [Pg.390]    [Pg.140]    [Pg.111]    [Pg.173]    [Pg.756]    [Pg.856]    [Pg.100]    [Pg.78]    [Pg.326]    [Pg.267]    [Pg.100]    [Pg.423]    [Pg.124]    [Pg.274]   
See also in sourсe #XX -- [ Pg.566 , Pg.570 ]




SEARCH



Reductants, effectiveness

© 2024 chempedia.info