Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction of Quinone

REDUCTION OF QUINONES WITH HYDRIODIC ACID DENZ[a]AHTHRACENE... [Pg.165]

The synthetic procedure described is based on that reported earlier for the synthesis on a smaller scale of anthracene, benz[a]anthracene, chrysene, dibenz[a,c]anthracene, and phenanthrene in excellent yields from the corresponding quinones. Although reduction of quinones with HI and phosphorus was described in the older literature, relatively drastic conditions were employed and mixtures of polyhydrogenated derivatives were the principal products. The relatively milder experimental procedure employed herein appears generally applicable to the reduction of both ortho- and para-quinones directly to the fully aromatic polycyclic arenes. The method is apparently inapplicable to quinones having an olefinic bond, such as o-naphthoquinone, since an analogous reaction of the latter provides a product of undetermined structure (unpublished result). As shown previously, phenols and hydro-quinones, implicated as intermediates in the reduction of quinones by HI, can also be smoothly deoxygenated to fully aromatic polycyclic arenes under conditions similar to those described herein. [Pg.167]

According to Clar, "the reduction of quinones with hydriodic acid and... [Pg.168]

A. Polarograms for the Reduction of Quinones to Quinone Anion Radicals by NADH at the W/DCE Interface... [Pg.501]

Additionally, it has been noted that Tetralin operates via hydride transfer, at least in its reduction of quinones. Thus it has been shown that Tetralin readily donates hydrogen to electron-poor systems, such as quinones at 50°-160°C. The reaction is accelerated by electron-withdrawing substituents on the H-acceptor and polar solvents, and is unaffected by free radical initiators (6). These observations are consistent with hydride transfer, as is the more recent finding of a tritium isotope effect for the reaction (7). [Pg.304]

Possible errors due to the competition of cytochrome c reduction with the reversible reduction of quinones by superoxide are frequently neglected. For example, it has been found that quinones (Q), benzoquinone (BQ), and menadione (MD) enhanced the SOD-inhibitable cytochrome c reduction by xanthine oxidase [6]. This seems to be a mystery because only menadione may enhance superoxide production by redox cycling ( °p)"]/ [MD] =-0.20 V against ,0[02 ]/[02] 0.16 V) via Reactions (3) and (4), whereas for... [Pg.962]

Reduction of quinones, quinonimines, nitroaromatics, azoaromatics, and oxidized aromatic heterocycles Oxidation of phenols and amines... [Pg.343]

While the cytochrome P-450 monooxygenase reaction described in Eq. (1) often involves hydroxylation of carbon, many other reactions are catalyzed by these enzyme systems. These reactions include oxidation of nitrogen and sulfur, epoxidation, dehalogenation, oxidative deamination and desulfuration, oxidative N-, O-, and S-dealkylation, and peroxidative reactions (56). Under anaerobic conditions, the enzyme system will also catalyze reduction of azo, nitro, N-oxide, and epoxide functional groups, and these reductive reactions have been recently reviewed (56, 57). Furthermore, the NADPH-cytochrome P-450 reductase is capable of catalyzing reduction of quinones, quinonimines, nitro-aromatics, azoaromatics, bipyridyliums, and tetrazoliums (58). [Pg.344]

Although reduction of quinones is usually a detoxication pathway, there are examples such as mitomycin C in which the hydroquinone is more toxic than the quinone as shown in Figure 5.12 and this may increase the susceptibility of cancers that express high levels of NQO. In this case, the reduction of the quinone leads to the loss of methanol, which is the first step in the activation of this anticancer agent (20). [Pg.116]

The reduction of quinones by sodium dithionite is well established [1 ] and can be used as a diagnostic test for the presence of the quininoid system. However, when the procedure is applied to a synthetic sequence, subsequent protection of the newly formed hydroxyl groups is invariably necessary in order to prevent re-oxidation of... [Pg.496]

As described, other nucleophilic reactions in the anthraquinone series also involve the production of anion-radicals. These reactions are as follows Hydroxylation of 9,10-anthraquinone-2-sulfonic acid (Fomin and Gurdzhiyan 1978) hydroxylation, alkoxylation, and cyanation in the homoaromatic ring of 9,10-anthraquinone condensed with 2,1,5-oxadiazole ring at positions 1 and 2 (Gorelik and Puchkova 1969). These studies suggest that one-electron reduction of quinone proceeds in parallel to the main nucleophilic reaction. The concentration of anthraquinone-2-sulfonate anion-radicals, for example, becomes independent of the duration time of the reaction with an alkali hydroxide, and the total yield of the anion-radicals does not exceed 10%. Inhibitors (oxygen, potassium ferricyanide) prevent formation of anion-radicals, and the yield of 2-hydroxyanthraquinone even increases somewhat. In this case, the anion-radical pathway is not the main one. The same conclusion is made in the case of oxadiazoloanthraquinone. [Pg.225]

Fig. 13.2 Reduction of quinone to semiquinone and hydroquinone through two one-electron transfer steps. (Larson and Weber 1994)... Fig. 13.2 Reduction of quinone to semiquinone and hydroquinone through two one-electron transfer steps. (Larson and Weber 1994)...
Surprisingly, the partial reduction of quinone 137 is best achieved by refluxing in acetic or propionic acids (yield 67%). Thereby the acids suffer oxidative decarboxylation (82CL701 85BCJ515). Two further unexpected routes are based on the redox reaction with cycloheptatriene (85BCJ2072) and electrolysis under the conditions of the cyclic voltammetry measurements (87BCJ2497), respectively. [Pg.117]

Lithium aluminum hydride reduced p-benzoquinone to hydroquinone (yield 70%) [576] and anthraquinone to anthrahydroquinone in 95% yield [576]. Tin reduced p-benzoquinone to hydroquinone in 88% yield [174] Procedure 35, p. 214). Stannous chloride converted tetrahydroxy-p-benzoquinone to hexa-hydroxybenzene in 70-77% yield [929], and 1,4-naphthoquinone to 1,4-di-hydroxynaphthalene in 96% yield [180]. Other reagents suitable for reduction of quinones are titanium trichloride [930], chromous chloride [187], hydrogen sulfide [248], sulfur dioxide [250] and others. Yields are usually good to excellent. Some of the reagents reduce the quinones selectively in the presence of other reducible functions. Thus hydrogen sulfide converted 2,7-dinitro-phenanthrene quinone to 9,10-dihydroxy-2,7-dinitrophenanthrene in 90% yield [248]. [Pg.129]

Further reduction of quinones - acquisition of four or more hydrogens per molecule - was achieved with lithium aluminum hydride which reduced, in yields lower than 10%, 2-methyl-1,4-naphthoquinone to 1,2,3,4-tetrahydro-l,4-dihydroxy-2-methylnaphthalene and to l,2,3,4-tetrahydro-4-hydroxy-l-keto-2-methylnaphthalene [931]. Lithium aluminum hydride [931], sodium borohydride, lithium trie thy Iborohydride and 9-borabicyclo[3.3.1Jnomine [100] converted anthraquinone to 9,10-dihydro-9,10-dihydroxyanthracene in respective yields of 67, 65, 77 and 79%. [Pg.129]

High pressure liquid chromatography (HPLC) was used for the quantitative measurement of quinones and hydroquinones in the cultures. 20 pi of supernatant were injected in a Merck-Hitachi HPLC system 655A-12 equipped with a 4.6 x 250 mm Nucleosil C18 column (5 pm, RP 18). The system was run at a flow rate of 1 ml min-1 with a methanol/water gradient (10 to 20% methanol in 15 min, then 20 to 100% methanol in 5 min). The UV detector was operated at 281 nm or 275 nm to follow the reduction of quinones 13 and 14, respectively (37). [Pg.461]


See other pages where Reduction of Quinone is mentioned: [Pg.492]    [Pg.1685]    [Pg.434]    [Pg.403]    [Pg.403]    [Pg.411]    [Pg.418]    [Pg.53]    [Pg.306]    [Pg.752]    [Pg.114]    [Pg.116]    [Pg.116]    [Pg.156]    [Pg.298]    [Pg.298]    [Pg.298]    [Pg.149]    [Pg.33]    [Pg.214]    [Pg.263]    [Pg.462]    [Pg.464]    [Pg.207]    [Pg.753]    [Pg.669]    [Pg.1295]   
See also in sourсe #XX -- [ Pg.16 ]

See also in sourсe #XX -- [ Pg.1221 , Pg.1261 ]

See also in sourсe #XX -- [ Pg.221 ]

See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Of quinones

Quinones reduction

Reduction of Diketones and Quinones

The Phytochemical Reduction of Diketones and Quinones

© 2024 chempedia.info